
APPENDICES

APPENDIX A Agency and Public Involvement

O 904-256-2500 F 904-256-2501 *rsandh.com*

9/26/22

Mr. Chris Stahl Florida Department of Environmental Protection Environmental Review Clearinghouse 3900 Commonwealth Blvd., MS 47 Tallahassee, FL 32399 Sent via email: <u>State.Clearinghouse@FloridaDEP.gov</u>

RE: Jacksonville International Airport – Replacement Concourse B EA – Early Coordination

Dear Mr. Stahl,

The Jacksonville Aviation Authority (Authority) proposes the replacement of Concourse B at Jacksonville International Airport (Airport or JAX) in Duval County, Jacksonville, Florida (see **Figure 1**, attached). The Proposed Project includes airside and landside improvements at the Airport (see **Figure 2**, attached) to accommodate existing demand. The Proposed Project is the construction and operation of a six-gate concourse (replacement Concourse B) and associated ramp area and bypass taxiway. The replacement Concourse B would consist of up to three levels and include holdrooms, aircraft gates, concessions, restrooms, and a connecting corridor to the main terminal with moving sidewalks.

The Authority will request the Federal Aviation Administration's (FAA) unconditional approval of the improvements on its Airport Layout Plan. This request is a Federal action, and through the requirement for the Authority to meet FAA grant assurances, RS&H, Inc. will prepare an Environmental Assessment (EA) for the Proposed Project.

In accordance with the National Environmental Policy Act (NEPA) and FAA Orders 1050.1F, *Environmental Impacts: Policies and Procedures* and 5050.4B, *National Environmental Policy Act (NEPA) Implementing Instructions of Airport Actions*, the EA will analyze the potential environmental effects of the Proposed Project. A project study area has been developed for the EA (see **Figure 3**, attached). Preliminary environmental analysis indicates that the Proposed Project would not result in significant impacts.

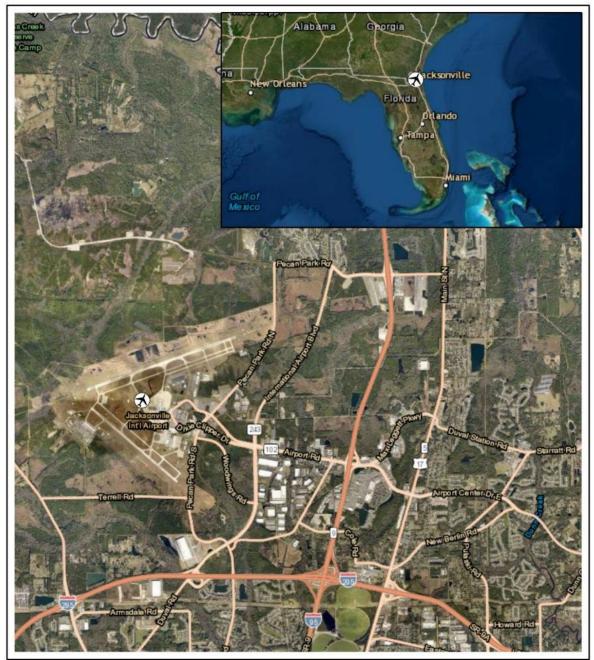
On behalf of the Authority, we are sending you this early notification letter to:

- 1. Advise your agency of the preparation of the EA;
- 2. Request any relevant information that your agency may have regarding the project site or environs; and
- 3. Solicit early comments regarding potential environmental, social, and economic issues for consideration during the preparation of the EA.

rsandh.com

You may send any information and comments to me via email at <u>David.Alberts@rsandh.com</u> or to the address provided at the top of this letter. We would appreciate your prompt response within 30 days.

On behalf of the Authority, we would like to thank you for your interest in this project and look forward to working with you as we prepare the EA. If you have any questions or need additional information regarding the Proposed Project or EA, please do not hesitate to contact me at (904) 256-2469.


Sincerely,

Illeto

David Alberts Project Manager RS&H, Inc.

Attachments

cc: Jacksonville Aviation Authority Federal Aviation Administration Orlando ADO Project File

Sources:ESRI, 2022; RS&H, 2022

Legend

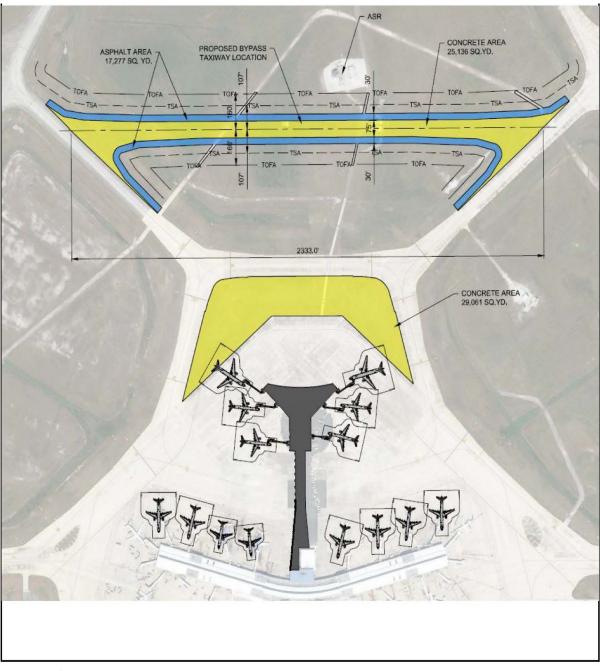
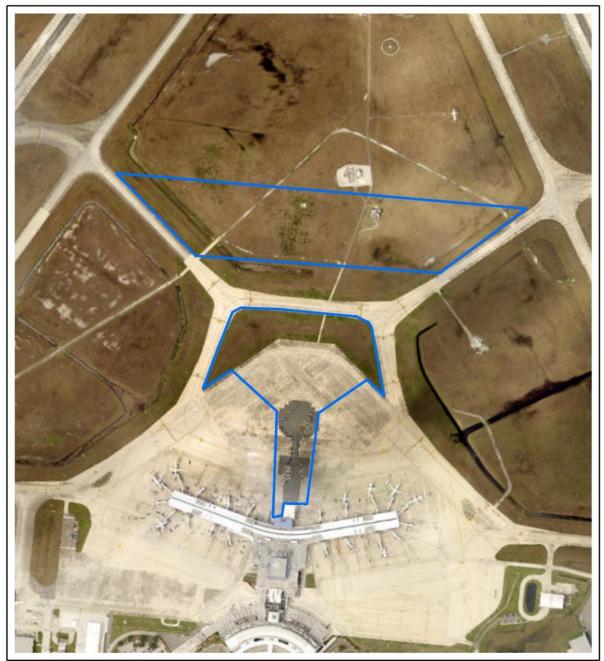

Airport Location

Figure is not to scale and is for graphic purposes only.

Figure 1 Airport Location



Sources: Jacobs, 2022; RS&H, 2022.

Figure 2 Proposed Project

Sources:ESRI, 2022; RS&H, 2022.

Legend

 $\sum z$

Project Study Area

Figure 3 Project Study Area

FLORIDA DEPARTMENT OF Environmental Protection

Northeast District 8800 Baymeadows Way West, Suite 100 Jacksonville, Florida 32256 Ron DeSantis Governor

Jeanette Nuñez Lt. Governor

Shawn Hamilton Secretary

October 24, 2022

Sent electronically to: David.Alberts@rsandh.com

Mr. David Alberts, Project Manager RS&H, Inc. 10748 Deerwood Park Boulevard, S. Jacksonville, Florida 32256

RE: Jacksonville International Airport – Replacement Concourse B Environmental Assessment (EA) – Early Coordination

Dear Mr. Alberts,

On September 26, 2022, the Northeast District office of the Florida Department of Environmental Protection (DEP) has received your notification letter via the DEP's State Clearinghouse Coordinator, regarding an early coordination review effort for the proposed replacement of Concourse B at Jacksonville International Airport, located in Duval County, Florida.

Based on the information provided, the following comments and recommendations are offered for this project:

Air Permitting

As this proposed project will be located within Duval County, we recommend contacting the City of Jacksonville's Planning and Development Department to inquire if a Planned Unit Development application would be required for an environmental review by local agencies. You may contact the City's Planning Division at (904) 255-7800.

Environmental Resource Permitting and Stormwater Permitting

This project should be reviewed by the St. Johns River Water Management District's (SJRWMD) Environmental Resource Permitting Program, according to the Operating Agreement between FDEP and SJRWMD. Please contact the SJRWMD at (800) 451-7106, to request a permit determination, or if you have questions about permitting requirements.

Groundwater

Any dewatering from pumping groundwater and discharging to a stormwater drainage system, or surface waters, may require a non-contaminated dewatering, or a Petroleum Contaminated Mr. David Alberts EA – Early Coordination Review - JIA Replacement Concourse B October 24, 2022 Page 2 of 3

Dewatering Generic Permit, and if the site is larger than one (1) acre, it may require a Stormwater Construction Activity Permit that can include non-contaminated dewatering, in accordance with Chapter 62-621, Florida Administrative Code (F.A.C.).

Please contact Robert L. Martin, of NED's Permitting Program, at (904) 256-1613, or via email at Robert.L.Martin@FloridaDEP.gov, regarding these requirements.

Solid Waste

Solid waste including construction and demolition debris (C&D) that may be generated by the construction project should be managed in accordance with the applicable, state solid waste regulations of Chapter 62-701, F.A.C. The C&D waste may be taken to a permitted C&D or Class III Disposal Facility, materials recovery facility, or transfer station.

The land clearing debris may also be taken to a registered yard trash processing facility, composting facility, or permitted yard trash disposal facility. Any Class I waste should be taken to a permitted Class I facility such as a landfill or waste processing facility.

Furniture, but not appliances, may go to a Class III facility, unless it is commingled or in contact with Class I waste, in which case it needs to go to a Class I facility.

Regarding the demolition of structures, it is recommended that any hazardous materials, if present, be removed from the structure and managed properly prior to its demolition, and be managed in accordance with applicable federal, state, and local regulations. The document titled, *Hazardous Materials Removal Prior to Demolition*, may be helpful and can be found at the following link: <u>https://floridadep.gov/waste/permitting-compliance-assistance/content/hazardous-waste-publications.</u>

Please contact Julia Boesch, of NED's Permitting Program, at (904) 256-1577, or via email at Julia.Boesch@FloridaDEP.gov, regarding these requirements.

Tanks

If this project includes the installation of a petroleum storage tank system to fuel an emergency generator and the tank storing the fuel is greater than a 550-gallon aboveground storage (AST) tank, or greater than a 110-gallon underground storage tank (UST), then the tank will be regulated by the Department and the facility must comply with Chapter 62-761 or 62-762, F.A.C., as applicable.

In addition, please note that 30- to 45-days' prior notice for the installation of the tank is required, and the tank must be registered with the Department.

Please contact Brierra Mack, of NED's Tanks Section, at (904) 256-1679, or via email at Brierra.Mack@FloridaDEP.gov, regarding these requirements. Mr. David Alberts EA – Early Coordination Review - JIA Replacement Concourse B October 24, 2022 Page 3 of 3

If you have any questions or need further assistance, please contact Vic Ford at Victoria.Ford@FloridaDEP.gov, or by phone at (904) 256-1505.

Sincerely,

Righty

Gregory J. Strong District Director

GS/vic

cc Chris Stahl, State Clearinghouse

NOTICE OF AVAILABILITY DRAFT ENVIRONMENTAL ASSESSMENT FOR CONCOURSE B AT

JACKSONVILLE INTERNATIONAL AIRPORT, JACKSONVILLE, FLORIDA

The Jacksonville Aviation Authority (Authority), in coordination with the Federal Aviation Administration (FAA), announces the availability of the Draft Environmental Assessment (EA) for the construction and operation of the proposed replacement Concourse B passenger terminal building at the Jacksonville International Airport (JAX), in Duval County, Florida. Pursuant to Title 49, United States Code, § 47106(c)(1)(A) and Section 102(2)(c) of the *National Environmental Policy Act* (NEPA) of 1969, the Draft EA is being circulated for review and comment from the public and federal, state, and local agencies.

Comments from the federal, state, and local agencies, and the public, will be considered as part of the Final EA. The Final EA will be submitted to the FAA for the agency's environmental determination.

Proposed Development Project: The Authority proposes to construct a new three-level, approximately 190,000 square foot, Concourse B passenger terminal building with six aircraft boarding gates. The concourse will be constructed in the same location as the previous Concourse B, which was removed in 2009. The proposed project also includes an associated ramp area, relocation of Taxiway V, raising the existing Airport Surveillance Radar (ASR), relocating the existing Remote Transmitter Receiver (RTR) and Surface Weather Station (SWS) systems, and demolishing an unused on-Airport building. The purpose of the proposed terminal is to to maintain its current level of service, proactively prevent near-future congestion, and continue safe passenger operations. The project is needed to accommodate increasing number of passengers using the airport, provide additional aircraft boarding gates, and supply additional holdroom space.

Summary of Impacts: A Draft EA has been prepared to disclose the potential economic, social, and environmental impacts of the Proposed Project. The EA discusses the Proposed Project, alternatives, and environmental effects in areas including Air Quality/Climate, Hazardous Materials, Solid Waste, and Pollution Prevention, Natural Resources and Energy Supply, Noise and Noise-Compatible Land Use, Surface Transportation, and Visual Effects. The research and analysis provided in the EA concluded that none of the impacts were significant

Draft EA Availability: The Draft EA is available for public review on the Airport's website <u>https://www.flyjacksonville.com/</u> and at the following locations:

Jacksonville Aviation Authority 14201 Pecan Park Road Jacksonville, FL 32218 Highlands Regional Library 1826 Dunn Ave, Jacksonville, FL 32218 **How to Comment:** Comments on the Draft EA should focus on the Proposed Project's economic, social, and environmental effects. Electronic comments may be sent to <u>David.Alberts@rsandh.com</u> or Lauren.Scott@flyjacksonville.com. Written comments can be mailed to either of the recipients below:

RS&H, Inc. Attn: Mr. David Alberts 10748 Deerwood Park Boulevard South Jacksonville, FL 32256 Jacksonville Aviation Authority Attn: Ms. Lauren Scott, A.A.E., ACE 14201 Pecan Park Road Jacksonville, FL 32218

The public comment period is 30 days and will begin on **March 19, 2024** and will close on **April 18, 2024**. Electronic and hand-delivered comments must be received no later than 5:00 pm Eastern Standard Time on **April 18, 2024**. Mailed comments must be postmarked no later than **April 18, 2024**.

Be advised that all comments can only be accepted with the full name and address of the individual commenting. All comments received, including personal identifying information, may be made publicly available at any time. While you can ask us in your comment to withhold your personal identifying information from public review, we cannot guarantee that we will be able to do so.

The FAA and the Authority will afford the public an opportunity to request a Public Hearing. The purpose of the hearing, if one is held, would be to solicit additional comments regarding the Proposed Project. Any person interested will have 15 days from the date of publication of this Notice of Availability to request a Public Hearing. In deciding whether a hearing is appropriate, the FAA shall consider whether there is substantial environmental controversy; substantial interest in holding a hearing; or a request for a hearing by an agency with jurisdiction. If a hearing is scheduled, the date and location will be announced in a separate notice. Request for a hearing should be received no later than **April 3, 2024, 5:00 pm Eastern Standard Time.**

Public Notices

Originally published at jacksonville.com on 03/19/2024

NOTICE OF AVAILABILITY DRAFT ENVIRONMENTAL ASSESSMENT FOR CONCOURSE B AT

JACKSONVILLE INTERNATIONAL AIRPORT, JACKSONVILLE, FLORIDA

The Jacksonville Aviation Authority (Authority), in coordination with the Federal Aviation Administration (FAA), announcesthe availability of the Draft Environmental Assessment (EA) for the construction and operation of the proposed replacement Concourse B passenger terminal building at the Jacksonville International Airport (JAX), in Duval County, Florida. Pursuant to Title 49, United States Code, § 47106(c)(1)(A) and Section 102(2)(c) of the National Environmental Policy Act (NEPA) of 1969, the Draft EA is being circulated for review and comment from the public and federal, state, and local agencies.

Comments from the federal, state, and local agencies, and the public, will be considered as part of the Final EA. The Final EA will be submitted to the FAA for the agency's environmental determination.

Proposed Development Project: The Authority proposes to construct a new three-level, approximately 190,000 square foot, Concourse B passenger terminal building with six aircraft boarding gates. The concourse will be constructed in the same location as the previous Concourse B, which was removed in 2009. The proposed project also includes an associated ramp area, relocation of Taxiway V, raising the existing Airport Surveillance Radar (ASR), relocating the existing Remote Transmitter Receiver (RTR) and Surface Weather Station (SWS) systems, and demolishing an unused on-Airport building. The purpose of the proposed terminal is to to maintain its current level of service, proactively prevent near-future congestion, and continue safe passenger operations. The project is needed to accommodate increasing number of passengers using the airport, provide additional aircraft boarding gates, and supply additional holdroom space.

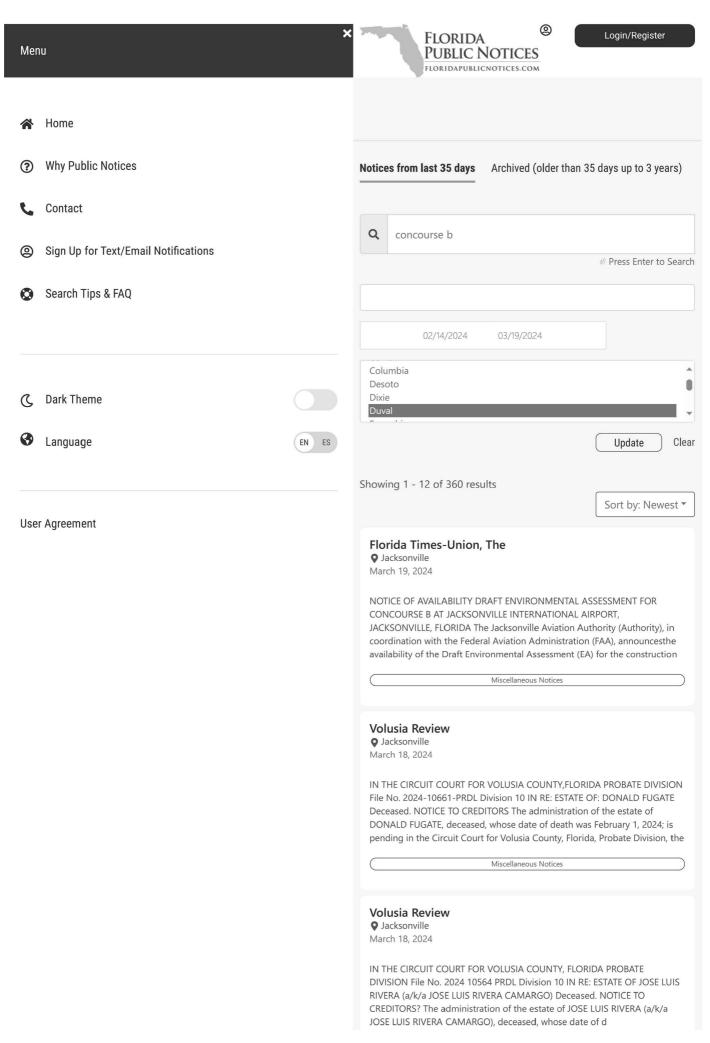
Summary of Impacts: A Draft EA has been prepared to disclose the potential economic, social, and environmental impacts of the Proposed Project. The EA discusses the Proposed Project, alternatives, and environmental effects in areas including Air Quality/Climate, Hazardous Materials, Solid Waste, and Pollution Prevention, Natural Resources and Energy Supply, Noise and Noise-Compatible Land Use, Surface Transportation, and Visual Effects. The research and analysis provided in the EA concluded that none of the impacts were significant

Draft EA Availability: The Draft EA is available for public review on the Airport's website https://www.flyjacksonville.com/ and at the following locations:

Jacksonville Aviation Authority 14201 Pecan Park Road Jacksonville, FL 32218

Highlands Regional Library 1826 Dunn Ave, Jacksonville, FL 32218

How to Comment: Comments on the Draft EA should focus on the Proposed Project's economic, social, and environmental effects. Electronic comments may be sent to David.Alberts@rsandh.com or Lauren.Scott@flyjacksonville.com. Written comments can be mailed to either of the recipients below:


RS&H, Inc. Attn: Mr. David Alberts 10748 Deerwood Park Boulevard South Jacksonville, FL 32256

Jacksonville Aviation Authority Attn: Ms. Lauren Scott, A.A.E., ACE 14201 Pecan Park Road Jacksonville, FL 32218 The public comment period is 30 days and will begin on March 19, 2024 and will close on April 18, 2024. Electronic and handdelivered comments must be received no later than 5:00 pm Eastern Standard Time on April 18, 2024. Mailed comments must be postmarked no later than April 18, 2024.

Be advised that all comments can only be accepted with the full name and address of the individual commenting. All comments received, including personal identifying information, may be made publicly available at any time. While you can ask us in your comment to withhold your personal identifying information from public review, we cannot guarantee that we will be able to do so.

The FAA and the Authority will afford the public an opportunity to request a Public Hearing. The purpose of the hearing, if one is held, would be to solicit additional comments regarding the Proposed Project. Any person interested will have 15 days from the date of publication of this Notice of Availability to request a Public Hearing. In deciding whether a hearing is appropriate, the FAA shall consider whether there is substantial environmental controversy; substantial interest in holding a hearing; or a request for a hearing by an agency with jurisdiction. If a hearing is scheduled, the date and location will be announced in a separate notice. Request for a hearing should be received no later than April 3, 2024, 5:00 pm Eastern Standard Time.

Publication Dates L00000000

Jax Master Plan Updates

ENVIRONMENTAL ASSESSMENT FOR WILDLIFE HAZARD REMOVAL Jacksonville International Airport (JAX)

Click Here to Download (PDF)

NOTICE OF AVAILABILITY: WILDLIFE HAZARD HABITAT CLEANING Jacksonville International Airport (JAX)

Click Here to Download (PDF)

JAX Master Plan Jacksonville International Airport (JAX)

Click Here to Download (PDF)

JAX Concourse B EA Appendices Jacksonville International Airport (JAX)

Click Here to Download (PDF)

JAX Concourse B EA Draft Jacksonville International Airport (JAX)

Click Here to Download (PDF)

JJAX Concourse B EA Main Draft Jacksonville International Airport (JAX)

Click Here to Download (PDF)

JAX Concourse B EA Draft NOA Jacksonville International Airport (JAX)

Click Here to Download (PDF)

SIDE MENU

> Where we fly

> About Northeast Florida

From:	Reed, Amy M (FAA)
To:	CompliancePermits
Cc:	Lauren Scott; Alberts, David
Subject:	Jacksonville International Airport (JAX) Replacement Concourse B
Date:	Wednesday, March 27, 2024 9:55:57 AM
Attachments:	JAX Concourse B EA - Section 106 FL SHPO letter signed.pdf

Ms. Slade Lotane,

Please see attached letter initiating Section 106 consultation for developing approximately 81 acres at the Jacksonville International Airport (JAX) in Duval County. The Proposed Project includes the construction and operation of a six-gate concourse (replacement Concourse B) and associated ramp area and bypass taxiway. The Proposed Project also includes raising the existing Airport Surveillance Radar (ASR), relocating the existing Remote Transmitter Receiver (RTR) and Surface Weather Station (SWS) systems, and demolishing an unused, small Airport storage and maintenance building. All project components will occur on airport property.

Based on available information, the Federal Aviation Administration's opinion is that the undertaking would have no effect on historic resources. We look forward to working with DHS to address any comments or questions.

Respectfully,

Amy

Amy Reed

Environmental Protection Specialist Federal Aviation Administration-FAA Orlando Airports District Office-ADO South Park Center 8427 South Park Circle, Suite 524 Orlando, FL 32819 T 813-966-9410 (Cell) amy.m.reed@faa.gov

March 27, 2024

Orlando Airports District Office 8427 South Park Circle, Suite 524 Orlando, FL 32819 Phone: (407) 487-7220 Fax: (407) 487-7135

[Sent via e-mail to: CompliancePermits@dos.myflorida.com]

Alissa Slade Lotane Director, Division of Historical Resources & State Historic Preservation Officer R.A. Gray Building 500 South Bronough Street Tallahassee, Florida 32399

> RE: Section 106 Consultation and Area of Potential Effect Replacement Concourse B Jacksonville International Airport (Duval County, Florida)

Dear Ms. Slade Lotane,

The Jacksonville Aviation Authority (JAA) has proposed to construct a new Concourse B terminal at Jacksonville International Airport (JAX). JAX originally had a Concourse B and it was demolished in 2009. The proposed new Concourse B would be a replacement for that facility (see **Figure 1**, *Airport Location*). JAA is requesting the Federal Aviation Administration's (FAA) unconditional approval of these improvements on its Airport Layout Plan. The Federal Action associated with the project is an "undertaking" subject the National Historic Preservation Act (Section 106) and its implementing regulations at 36 CFR Part 800. This letter is intended to initiate Section 106 consultation.

Proposed Undertaking

The Proposed Project includes the construction and operation of a six-gate concourse (replacement Concourse B) and associated ramp area and bypass taxiway. The Proposed Project also includes raising the existing Airport Surveillance Radar (ASR), relocating the existing Remote Transmitter Receiver (RTR) and Surface Weather Station (SWS) systems, and demolishing an unused, small Airport storage and maintenance building (see **Figure 2**, *Proposed Project*). The replacement Concourse B would consist of up to three levels and include holdrooms, aircraft gates, concessions, restrooms, and a connecting corridor to the main terminal with moving sidewalks.

Areas of Potential Effects (APE)

The proposed undertaking is located on the west side of the Airport's terminal area, entirely within Airport property (see **Figure 3**, *Direct Area of Potential Effect*). This APE includes the direct impacts that may be associated with the 81-acre project footprint (the ground disturbance area). Because this project has the potential to increase aircraft operations at JAX, a noise analysis was developed using the Aviation Environmental Design Tool (AEDT). The AEDT evaluates potential noise impacts from airport projects and produces aircraft noise contours that delineate areas of equal day-night average sound level (DNL). The Indirect APE is the proposed 2031 DNL 65 dB noise contour, which totals approximately 5.02 square miles (see Figure 4, Indirect Area of Potential Effect). This APE includes the indirect impacts to historic and cultural resources that may result from increased aircraft noise.

Historic and Archaeological Resources in the APEs

There are no resources listed on the National Register of Historic Places (NRHP) within or adjacent to the APEs. According to the National Park Service, the nearest National Register-listed resource is the Lewis Mausoleum located about 9.5 miles south of the Direct APE.

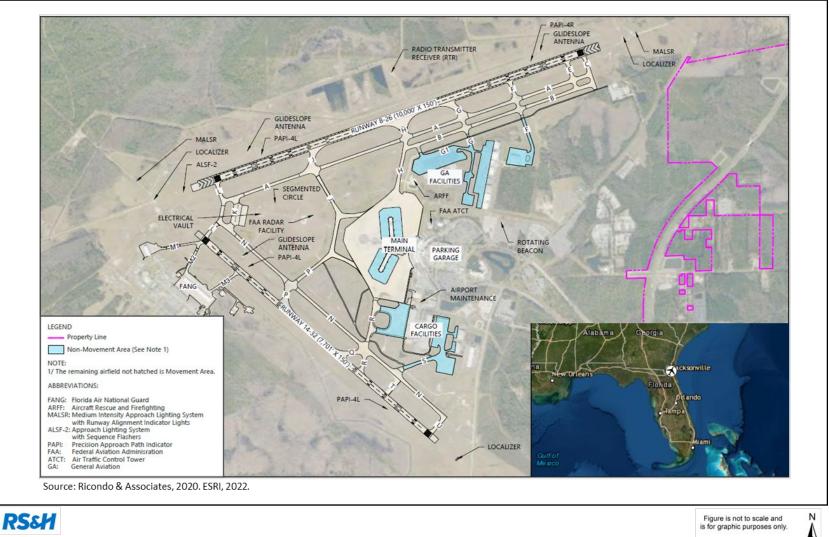
According to the Florida Master Site File (FMSF) records, one archaeological resource exists in the Indirect APE. The Florida SHPO determined that the Jax Raceways Site (site ID 17810) was not eligible for listing on the NRHP (SHPO, 2024). The FMSF also identified seven standing structures within the Indirect APE at the Florida Air National Guard (FANG) 125th Fighter Wing (FW). All FANG 125th FW buildings and structures were surveyed and evaluated as described in the *United States Air Force F-35A Operational Beddown – Air National Guard Final Environmental Impact Statement* (USAF, 2021). The National Guard Bureau determined that the FANG 125th FW's structures were not eligible for listing on the NRHP. The Florida SHPO concurred with the determination of eligibility (USAF, 2021).

The Direct APE consists of a concrete pad and a previously modified and maintained grass area and associated swale that serves as part of the airports permitted stormwater system. The FMSF database did not identify any resources within or near the Direct APE. As such, no archaeological investigation was performed.

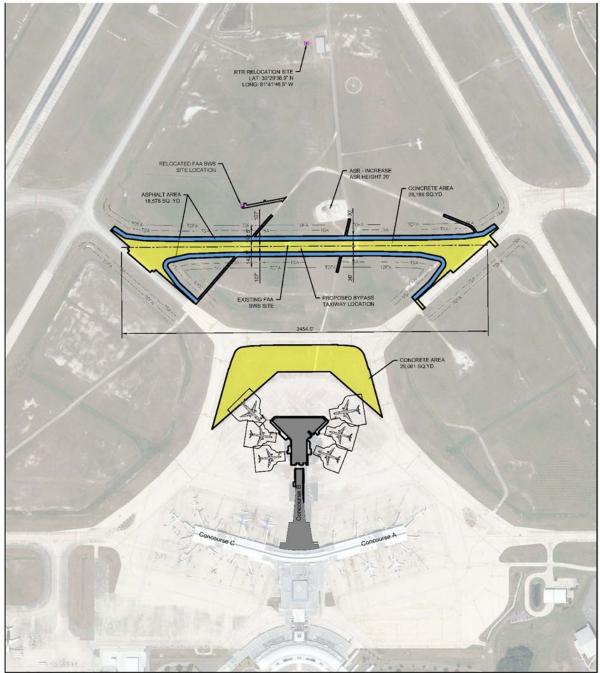
Determination of Effect

Based on a review of the proposed project and information available, the FAA has determined the undertaking would not affect historic properties. Based on the noise analysis conducted as part of the Environmental Assessment, noise generated by the Proposed Project would have a minimal effect on aircraft noise generated at the airport. The change in noise associated with the Proposed Project would be negligible and would not be noticeable. Because the Proposed Project includes ground disturbance activities, the FAA will require the Authority to implement special conditions regarding unexpected discoveries during construction.

FAA requests your review of the enclosed project information and respond within 30 days of receipt of this letter indicating if you concur with the determination of effect. Please direct correspondence and questions to me at 407-487-7297 or <u>Amy.M.Reed@faa.gov</u>.


Sincerely,

Amy M. Reed Environmental Protection Specialist


Enclosures

Cc: Jacksonville Aviation Authority RS&H, Inc.

FIGURE 1: AIRPORT LOCATION

FIGURE 2: PROPOSED PROJECT

Source: Jacobs Engineering, 2023

Legend:

New Apron/Taxiway

New Taxiway Shoulder

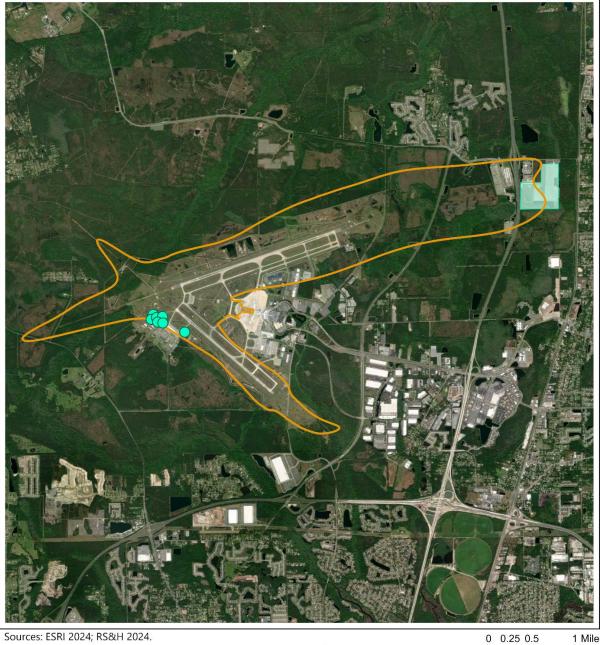
New Concourse B

FIGURE 3: DIRECT APE

Sources:ESRI, 2022; RS&H, 2022.

Legend

Raised ASR


 \bigcirc

Relocated RTR \bigcirc Existing RTR 😑 Relocated SWS

FIGURE 4: INDIRECT APE

Sources: ESRI 2024; RS&H 2024.

Archaeological Resources

Standing Structures

1 Mile

T

From:	CompliancePermits
To:	Reed, Amy M (FAA)
Cc:	Lauren Scott; Alberts, David
Subject:	Re: Jacksonville International Airport (JAX) Replacement Concourse B
Date:	Friday, April 26, 2024 4:19:39 PM
Attachments:	2024-2118 106 FAA Duval Concur.pdf

Good Afternoon,

I have attached our comments for the project. Please let me know if you have any questions.

Sincerely,

Michael DuBose

Historic Preservationist Compliance and Review Bureau of Historic Preservation Division of Historical Resources Florida Department of State Office: 850.245.6342 <u>Michael.DuBose@dos.fl.gov</u> R.A. Gray Building 500 South Bronough Street Tallahassee, Florida 32399

From: Reed, Amy M (FAA) <amy.m.reed@faa.gov>

Sent: Wednesday, March 27, 2024 09:54

To: CompliancePermits <CompliancePermits@DOS.MyFlorida.com>

Cc: Lauren Scott <lauren.scott@flyjacksonville.com>; Alberts, David <David.Alberts@rsandh.com> **Subject:** Jacksonville International Airport (JAX) | Replacement Concourse B

EMAIL RECEIVED FROM EXTERNAL SOURCE

The attachments/links in this message have been scanned by Proofpoint.

Ms. Slade Lotane,

Please see attached letter initiating Section 106 consultation for developing approximately 81 acres at the Jacksonville International Airport (JAX) in Duval County. The Proposed Project includes the construction and operation of a six-gate concourse (replacement Concourse B) and associated ramp area and bypass taxiway. The Proposed Project also includes raising the existing Airport Surveillance Radar (ASR), relocating the existing Remote Transmitter Receiver (RTR) and Surface Weather Station (SWS) systems, and demolishing an unused, small Airport storage and maintenance building. All project components will occur on airport property.

Based on available information, the Federal Aviation Administration's opinion is that the undertaking would have no effect on historic resources. We look forward to working with DHS to address any comments or questions.

Respectfully,

Amy

Amy Reed

Environmental Protection Specialist Federal Aviation Administration-FAA Orlando Airports District Office-ADO South Park Center 8427 South Park Circle, Suite 524 Orlando, FL 32819 T 813-966-9410 (Cell) amy.m.reed@faa.gov

FLORIDA DEPARTMENT Of STATE

RON DESANTIS Governor **CORD BYRD** Secretary of State

April 26, 2024

Amy Reed Environmental Protection Specialist Federal Aviation Administration-FAA Orlando Airports District Office-ADO 8427 South Park Circle, Suite 524 Orlando, FL 32819

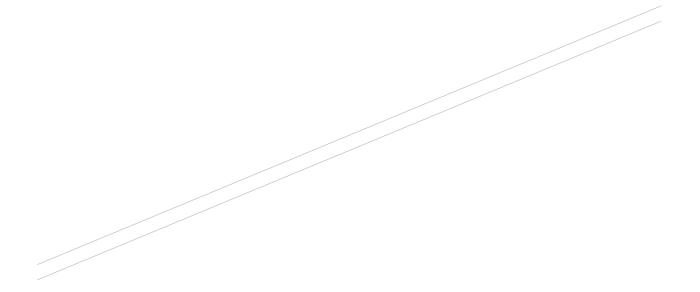
> DHR Project File No.: 2024-2118, Received by DHR: March 27, 2024 Project: *Replacement Concourse B - Jacksonville International Airport* County: Duval

To Whom It May Concern:

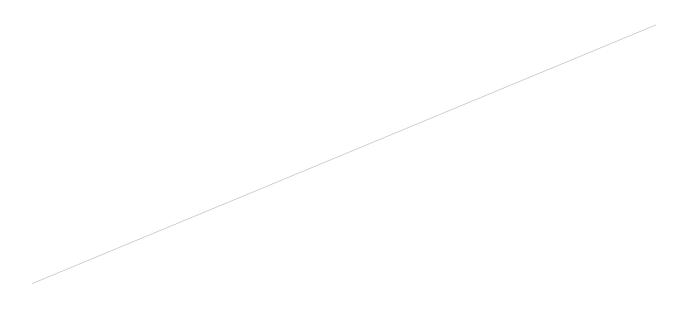
The Florida State Historic Preservation Officer reviewed the referenced project for possible effects on historic properties listed, or eligible for listing, on the *National Register of Historic Places*. The review was conducted in accordance with Section 106 of the *National Historic Preservation Act of 1966*, as amended, and its implementing regulations in *36 CFR Part 800: Protection of Historic Properties*.

Based on the information provided, our office concurs with FAA's determination that the proposed activities will have no adverse effect on historic properties. However, the permit, if issued, should include the following special condition regarding unexpected discoveries:

- If prehistoric or historic artifacts, such as pottery or ceramics, projectile points, dugout canoes, metal implements, historic building materials, or any other physical remains that could be associated with Native American, early European, or American settlement are encountered at any time within the project site area, the permitted project shall cease all activities involving subsurface disturbance in the vicinity of the discovery. The applicant shall contact the Florida Department of State, Division of Historical Resources, Compliance and Review Section at (850)-245-6333. Project activities shall not resume without verbal and/or written authorization.
- In the event that unmarked human remains are encountered during permitted activities, all work shall stop immediately and the proper authorities notified in accordance with Section 872.05, *Florida Statutes*.


If you have any questions, please contact Michael DuBose, Historic Preservationist, by email at <u>Michael.DuBose@dos.fl.gov</u> or by telephone at 850.245.6342.

Sincerely,


Alissa Slade Lotane Director, Division of Historical Resources & State Historic Preservation Officer

> Division of Historical Resources R.A. Gray Building • 500 South Bronough Street • Tallahassee, Florida 32399 850.245.6300 • 850.245.6436 (Fax) • FLHeritage.com

APPENDIX B Air Quality, Climate, and GHG Social Cost Analysis

B.1 Construction Emission Inventory

This construction emission inventory (CEI) assessment was prepared for informational purposes to disclose the potential construction-related emissions generated by the Proposed Project.

The U.S. Environmental Protection Agency (USEPA) sets National Ambient Air Quality Standards (NAAQS) to protect public health and the environment. The USEPA has identified the following seven criteria air pollutants for which NAAQS are applicable: carbon monoxide (CO), lead (Pb), nitrogen dioxide (NO₂), ozone (O₃), particulate matter (PM₁₀ and PM_{2.5}), and sulfur dioxide (SO₂). The USEPA describes these pollutants as "criteria" air pollutants because the agency regulates them by developing human health-based and/or environmentally-based criteria (science-based guidelines) for setting permissible levels (EPA, 2023).

According to the USEPA, Duval County, where all study areas are located, is classified as "attainment for all criteria pollutants (EPA, 2023).

The EA's Direct and Indirect Study areas are located entirely within Duval County. All construction activity would occur in the Direct Study Area. The Direct Study Area is an "attainment" area for all National Ambient Air Quality Standards (NAAQS) (EPA, 2023).¹

B.1.1 Construction Emissions Inventory Approach

Construction requirements for the Proposed Project include a variety of construction emissions sources: off-road, on-road, and fugitive dust. The emissions from these sources are most commonly associated with the following types of activities: earthwork, grading and leveling, and construction equipment storage and movement. Construction of the Proposed Project is anticipated to begin in 2024 and end in 2026. Construction emissions are estimated based on these factors: construction schedule; the number of construction vehicles and/or equipment; the types of construction vehicles and/or equipment; types of fuel used to power the equipment and vehicles; vehicle and equipment hourly activity/vehicle miles traveled; construction materials used and their quantities; and the duration of construction.

Non-road Emission Sources

Non-road sources associated with the Proposed Project's construction include exhaust from heavy construction equipment (e.g., graders, excavators, rollers, dump trucks) and fugitive dust emissions). The CEI assessment was based on the factors described in the above paragraph.

On-road Emission Sources

On-road emission sources associated with the Proposed Project's construction include material delivery vehicles (e.g., dump trucks, 18-wheelers carrying asphalt) and passenger vehicles transporting construction personnel to and from the job site.

Fugitive Emissions

Paving or dust emission sources associated with the Proposed Project's construction include asphalt storage, material movement on paved and unpaved roads, soil handling, un-stabilized land, and wind erosion. Paving or dust emissions were based on the number of months for construction.

¹ NAAQS are six criteria pollutants: carbon monoxide, lead, ozone, sulfur dioxide, nitrogen dioxide, and ozone.

B.1.2 MOVES3

The CEI used the EPA's MOtor Vehicle Emissions Simulator 3 (MOVES3.1) to analyze the Proposed Project's potential construction emissions.

<u>Inputs</u>

The Proposed Project's cost estimates and typical construction practices were used to develop the CEI inputs displayed in *Table B-1, Table B-2, Table B-3,* and *Table B-4*. Inputs are based on engineering judgment and past experience with airport construction projects. These equipment types and hours were used in MOVES3.1 to develop non-road and on-road engine emissions and load factors to determine the Proposed Project's emissions.

Equipment Type	Fuel Type	Operating Hours
90 Ton Crane	Diesel	320
Air Compressor	Diesel	191
Asphalt Paver	Diesel	23
Backhoe	Diesel	320
Chain Saw	Diesel	130
Chipper/Stump Grinder	Diesel	130
Concrete Pump	Diesel	12
Concrete Ready Mix Trucks	Diesel	60
Concrete Saws	Diesel	191
Concrete Truck	Diesel	818
Distributing Tanker	Diesel	77
Dozer	Diesel	1,402
Dump Truck	Diesel	577
Dump Truck (12 cy)	Diesel	2,385
Excavator	Diesel	441
Flatbed Truck	Diesel	1,560
Fork Truck	Diesel	1,480
Generator	Diesel	300
Grader	Diesel	83
Hydroseeder	Diesel	47
Loader	Diesel	377
Man Lift	Diesel	1,080
Off-Road Truck	Diesel	47
Other General Equipment	Diesel	2,510
Pickup Truck	Diesel	3,868
Pumps	Diesel	68
Roller	Diesel	896
Rubber Tired Loader	Diesel	191
Scraper	Diesel	316
Skid Steer Loader	Diesel	107
Slip Form Paver	Diesel	191
Surfacing Equipment (Grooving)	Diesel	220
Survey Crew Trucks	Diesel	10

Table B-1 2024 Non-Road Construction Emissions Inventory Inputs

Equipment Type	Fuel Type	Operating Hours
Tool Truck	Diesel	302
Tractor Trailer- Material Delivery	Diesel	286
Tractor Trailer- Steel Deliveries	Diesel	40
Tractor Trailers Temp Fac.	Diesel	4
Tractors/Loader/Backhoe	Diesel	257
Trowel Machine	Diesel	12
Water Truck	Diesel	8,640

Source: RS&H 2023

Table B-2 2025 Non-Road Construction Emissions Inventory Inputs

Equipment Type	Fuel Type	Operating Hours
Fork Truck	Diesel	1,920
High Lift	Diesel	920
Man Lift	Diesel	1,920
Man Lift (Fascia Construction)	Diesel	24
Material Deliveries	Diesel	60
Tool Truck	Diesel	440
Tractor Trailer- Material Delivery	Diesel	540

Source: RS&H 2023

Vehicle Miles Traveled (VMT) is based on the distance traveled by employees and material deliveries for the Proposed Project. MOVES3.1 uses a 30-mile round trip per passenger car and a 40-mile trip per material delivery.

Table B-3 2024 On-Road Construction Emissions Inventory Inputs

Equipment	Fuel Type	VMT*
Single Unit Short-haul Truck	Diesel	210,466.30
Combination Short-haul Truck	Diesel	2,481.65
Passenger Car	Gasoline	8,885,520.00

Note – VMT = vehicle miles traveled Source: MOVES3.1, RS&H 2023

Table B-4: 2025 On-Road Construction Emissions Inventory Inputs

Equipment	Fuel Type	VMT*
Single Unit Short-haul Truck	Diesel	6,914.70
Combination Short-haul Truck	Diesel	103.35
Passenger Car	Gasoline	10,846,836.00

Note – VMT = vehicle miles traveled Source: MOVES3.1, RS&H 2023

Construction Emissions Inventory Results

For informational purposes, *Table B-5* shows the criteria pollutants in tons per year during the Proposed Project's construction.

Table B-5: Proposed Project MOVES3 Results (Tons Per Year)

							(GHGs	
2024	СО	VOC	NOx	PM 10	PM _{2.5}	SOx	CO ₂	CH ₄	N ₂ O
NONROAD	0.03	0.00	0.06	0.00	0.00	0.00	53.13	N/A	N/A
ONROAD	13.90	0.12	0.41	0.01	0.01	0.01	1,015.06	0.04	0.00
TOTAL	13.93	0.12	0.47	0.01	0.01	0.01	1,068.19	0.04	0.00

							(GHGs	
2025	СО	VOC	NOx	PM 10	PM _{2.5}	SOx	CO ₂	CH ₄	N ₂ O
NONROAD	0.17	0.03	0.61	0.03	0.03	0.00	1,137.32	N/A	N/A
ONROAD	29.55	0.25	0.89	0.02	0.02	0.01	2,260.33	0.07	0.01
TOTAL	29.72	0.28	1.51	0.06	0.05	0.02	3,397.65	0.07	0.01

							(GHGs	
2026	СО	VOC	NOx	PM ₁₀	PM _{2.5}	SOx	CO ₂	CH₄	N ₂ O
NONROAD	0.43	0.10	1.71	0.09	0.09	0.01	3,671.28	N/A	N/A
ONROAD	28.52	0.25	1.10	0.04	0.03	0.02	2,663.80	0.08	0.01
TOTAL	28.94	0.35	2.81	0.13	0.12	0.03	6,335.09	0.08	0.01

							GHGs			
Total	СО	VOC	NOx	PM ₁₀	PM _{2.5}	SOx	CO ₂	CH ₄	N ₂ O	
NONROAD	0.62	0.14	2.39	0.13	0.13	0.01	4,861.73	N/A	N/A	
ONROAD	71.97	0.62	2.40	0.07	0.06	0.04	5 <i>,</i> 939.19	0.18	0.02	
FUGITIVE	0.40	6.21	0.03	1.07	N/A	0.00	N/A	N/A	N/A	
TOTAL (TPY)	73.00	6.97	4.81	1.27	0.19	0.06	10,800.92	0.18	0.02	

Note – N/A = not applicable. Totals may not sum due to rounding Source: MOVES3.1, RS&H 2024.

B.2 Aviation Operational Emissions

When compared to the No Action Alternative, the Proposed Project would result in an increase in aircraft operations in 2026 and 2031. The EA's Direct and Indirect study areas are in "attainment" for all NAAQS. Therefore, air quality *de minimis* thresholds do not apply.

For informational purposes, operational aviation emissions were calculated for the opening year 2026 and five years after the opening year in 2031 for the Proposed Project. Operational aviation emissions

were calculated using the FAA's Aviation Environmental Design Tool (AEDT) up to the 10,000-foot mixing height. See *Table B-6* for emissions that would be generated from the Proposed Project.

Year	СО	VOC	NOx	SOx	PM2.5	PM10
2026						
No Action Alternative	350.51	60.62	183.95	21.58	2.31	2.31
Proposed Project	373.75	63.77	196.89	23.21	2.43	2.43
Difference	23.25	3.14	12.95	1.62	0.12	0.12
2031						
No Action Alternative	380.45	64.86	200.77	23.64	2.46	2.46
Proposed Project	452.47	74.60	240.85	28.67	2.83	2.83
Difference	72.02	9.74	40.08	5.03	0.37	0.37

Table B-6: Operational Aviation Emissions in Tons Per Year (up to 10,000-foot Mixing Height)

Note: Calculated up to the 10,000-foot mixing height for social cost calculations. Source: AEDT, 2023, RS&H, 2023.

B.3 Climate and GHG Social Costs

In January 2023, the Council on Environmental Quality (CEQ) issued interim guidance, *National Environmental Policy Act Guidance on Consideration of Greenhouse Gas Emissions and Climate Change*,² to assist agencies in analyzing greenhouse gas emissions (GHG) and climate change effects of a proposed project under NEPA. The CEQ identified Social Cost-Greenhouse Gases (SC-GHG) as the metric for assessing potential climate impacts and represents the monetary estimate of the effect associated with each additional metric ton of carbon dioxide released into the air (Interagency Working Group, 2021). The three GHGs³ that are analyzed are carbon dioxide (CO₂), methane (CH₄), and nitrous oxide (N₂O), which represent more than 97% of U.S. GHG emissions.

To calculate SC-GHG, the carbon dioxide equivalent CO₂e⁴ must be calculated first. CO₂e is calculated using the Global Warming Potential (GWP) metric to compare the impact a gas has on the global climate concerning CO₂. GWP values are based on the Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report (AR6) (IPCC, 2023). For example, CH₄ has 28 times the GWP of CO₂ and absorbs 28 times more energy in the atmosphere when compared to CO₂ (IPCC, 2023). *Table B-7* shows the CO₂e values for the construction years of 2024, 2025, and 2026 using the CEI results from *Table B-5*. Operational aviation emissions from the Proposed Project are represented in 2026⁵ and 2031⁶ (see

² 88 FR 1196, National Environmental Policy Act Guidance on Consideration of Greenhouse Gas Emissions and Climate Change, <u>https://www.federalregister.gov/documents/2023/01/09/2023-00158/national-environmental-policy-act-guidance-onconsideration-of-greenhouse-gas-emissions-and-climate; Accessed November, 2023</u>

³ These three GHGs are identified in the CEQ's National Environmental Policy Act Guidance on Consideration of Greenhouse Gas Emissions and Climate Change.

⁴ CO₂e: Number of metric tons of CO2 emissions with the same global warming potential as one metric ton of another greenhouse gas.

⁵ 2026 represents the opening year of the Proposed Project.

⁶ 2031 represents five years after the opening year of the Proposed Project.

Table B-6). The associated CO₂e emissions from the operation of the Proposed Project are included in *Table B-7*.

Table B-7	Proposed	Project	CO ₂ e
-----------	----------	---------	-------------------

Year	Pollutant	Emissions	AR6 GWP	CO ₂ e		
		Quantity (Tons)				
	Construction Emissions					
2024	CO ₂	13.93	1	13.93		
	CH ₄	0.04	28	0.99		
	N ₂ 0	0.47	265	123.49		
			Total	138.42		
2025	CO ₂	29.72	1	29.72		
	CH ₄	0.07	28	2.05		
	N ₂ 0	0.01	265	2.42		
			Total	34.19		
2026	CO ₂	28.94	1	28.94		
	CH ₄	0.08	28	2.12		
	N ₂ 0	0.01	265	2.78		
			Total	33.84		
	Operational Emissions					
2026	CO ₂	23.25	1	23.25		
	CH_4	0.0	28	0.0		
	N ₂ 0	12.95	265	3,431.75		
			Total	3,455		
2031	CO ₂	72.02	1	72.02		
	CH ₄	0.0	28	0.0		
-	N ₂ 0	40.08	265	10,621.2		
			Total	10,693.22		

Note: Totals may not sum due to rounding

Sources: MOVES 3.1; Interagency Working Group, 2021⁷, IPCC Sixth Assessment 2023⁸

The Interagency Working Group (IWG) developed average discount rates to assess climate impacts over time. The higher the discount rate, the lower the social climate cost (SCC) for future generations. Three integrated assessment models (IAMs) were used to develop discount rates that were based on the results from the three IAMs used by the IWG: William Nordhaus' DICE model (Yale University), Richard

⁷ https://www.whitehouse.gov/wpcontent/uploads/2021/02/TechnicalSupportDocument_SocialCostofCarbonMethaneNitrousOxide.pdf; Accessed November 2023

⁸ <u>https://www.ipcc.ch/report/ar6/syr/downloads/report/IPCC_AR6_SYR_LongerReport.pdf;</u> Accessed November 2023

Tol's FUND model (Sussex University), and Chris Hope's PAGE model (Cambridge University) (Interagency Working Group, 2021). The IWG average discount rates are 5 percent, 3 percent, 2.5 percent, and the 95th percentile estimate at the 3 percent discount rate, which represents the potential for low-probability catastrophic climate impacts. The IWG average discount rates represent a range of possible climate impacts to future generations. For example, the 5 percent average rate represents a situation where future generations are best suited to handle potential climate impacts from the Proposed Project, leading to a minimal social cost impact. The IWG determined the social cost of CO₂ (SC-CO₂) through 2050 and assigned a monetary value⁹ for each additional metric ton of CO₂ produced. SC-CO₂ is equivalent to SC-GHGs and represents the social costs of the total greenhouse gases converted to the CO₂e equivalent. The SC-CO₂ helps weigh the benefits of climate mitigation against its costs.

Table B-8 shows the monetary value of each additional metric ton of CO₂ for 2024, 2025, 2026, and 2031. The SC-CO₂ models project the future cost of each additional ton of CO₂ (Institute for Policy Integrity, 2017).

Table B-9 shows the Social Cost of Carbon Dioxide (SC-CO₂) for the Proposed Project. The construction emissions inventory's CO₂e (see **Table B-7**) was multiplied by the average discount rates (see **Table B-8**) to determine the monetary impact for 2024, 2025, and 2026. The Proposed Project's CO₂e operational aviation emissions data was multiplied by the average discount rate (see **Table B-8**) to determine the monetary impact for 2026 and 2031.

Emissions year	Average Estimate at 5% Discount Rate	Average Estimate at 3% Discount Rate	Average Estimate at 2.5% Discount Rate	95 th Percentile Estimate at 3.0% Discount Rate		
	Construction Emissions					
2024	\$16	\$55	\$82	\$166		
2025	\$17	\$56	\$83	\$169		
2026	\$17	\$57	\$84	\$173		
Operational Emissions						
2026	\$17	\$57	\$84	\$173		
2031	\$20	\$63	\$91	\$191		

Table B-8: Annual SC-CO₂ Per Metric Ton of CO₂ (in 2020 dollars)

Note: Discount Rates from IWG 2021 represent the monetary value of each additional metric ton of CO₂ produced for 2024, 2025, 2026, and 2031. The year 2026 represents the opening year of the Proposed Project, and 2031 represents five years after the opening year of the Proposed Project. These monetary values are based on the results from three economic models used by the IWG: William Nordhaus' DICE model (Yale University), Richard Tol's FUND model (Sussex University), and Chris Hope's PAGE model (Cambridge University). The model projects the future cost of each additional metric ton of CO₂.

Sources: Interagency Working Group, 2021, IPCC Sixth Assessment 2023, RS&H, 2024.

⁹ These monetary values are based on the results from three economic models used by the IWG: William Nordhaus' DICE model (Yale University), Richard Tol's FUND model (Sussex University), and Chris Hope's PAGE model (Cambridge University).

The calculated social costs are estimates only and subject to change depending on various factors (i.e., flooding, energy supply).¹⁰ These calculations are for information purposes only and represent the potential social costs from construction emissions in 2024, 2025, and 2026 and operational emissions in 2026 and 2031. The social cost calculations represent a range of possibilities and are not guaranteed to occur. Advances in technology and operational practices could lead to lower social impacts than disclosed. As shown in *Table B-9*, the range of potential social costs for 2024 from construction emissions is approximately \$2,200 – \$23,000; for 2025, the potential social cost is approximately \$600 - \$5,800. The potential social cost for 2026 is approximately \$600 - \$5,900. For operational emissions in 2026, the potential social cost ranges from approximately \$59,000 to \$600,000; for 2031, the potential social cost ranges from approximately \$214,000 to just over \$2,000,000. This cost range represents the potential social costs of adding GHGs to the atmosphere in a given year. It includes the value of all climate change impacts, including (but not limited to) changes in net agricultural productivity, human health effects, property damage from increased flood risk natural disasters, disruption of energy systems, risk of conflict, environmental migration, and the value of ecosystem services. It is important to note that this climate analysis does not include positive impacts from the Proposed Project (e.g., economic development, meeting forecast passenger demand, maintaining the Airport's current level of service, and continuing to provide safe and efficient aircraft movement at the Airport).

Year	Proposed Project CO ₂ e	Average Estimate at 5% Discount Rate	Average Estimate at 3% Discount Rate	Average Estimate at 2.5% Discount Rate	95 th Percentile Estimate at 3.0% Discount Rate
Construction Emissions					
2024	138.42	\$2,214	\$7,613	\$11,350	\$22,977
2025	34.19	\$581	\$1,914	\$2 <i>,</i> 838	\$5,778
2026	33.84	\$575	\$1,928	\$2,842	\$5 <i>,</i> 854
Operational Emissions					
2026	3,455.0	\$58,735	\$196,935	\$290,220	\$597,715
2031	10,693.22	\$213,864	\$673,672	\$973 <i>,</i> 083	\$2,042,405

Table B-9: Social Cost - Carbon Dioxide for the Proposed Project

Note: Per the 2023 IPCC Sixth Assessment Report, CO₂e equivalent for SC-GHG were calculated using the Interagency Working Group¹¹ average discount rates: 5 percent, 3 percent, 2.5 percent, and the 95th percentile estimate applying the 3 percent discount rate. CO₂e Values are multiplied by the discount rate to calculate SC-CO₂.

Per the 2023 IPCC¹² Sixth Assessment Report, the CO₂ equivalent for N₂O is calculated by multiplying the N₂O emissions by the GWP of 265. The CO₂ equivalent for CH₄ is calculated by multiplying the CH₄ emissions by the GWP of 28. For example, the 2024 Average Estimate at a 5% Discount Rate was calculated using the 2024 CO2e value of 43.51 multiplied by 2024's \$16 determined value for the 5% Discount Rate. Sources: Interagency Working Group, 2021, IPCC Sixth Assessment 2023, RS&H, 2024.

¹⁰ <u>https://costofcarbon.org/files/Omitted Damages Whats Missing From the Social Cost of Carbon.pdf</u>, Accessed November 2023
¹¹<u>https://www.whitehouse.gov/wpcontent/uploads/2021/02/TechnicalSupportDocument_SocialCostofCarbonMethaneNitrousOxide.p</u>

df; Accessed November, 2023

¹² https://www.ipcc.ch/report/ar6/syr/downloads/report/IPCC_AR6_SYR_LongerReport.pdf; Accessed November, 2023

APPENDIX C Aircraft Noise Analysis

C.1 INTRODUCTION

This technical report presents the aircraft noise exposure for the Jacksonville International Airport (JAX or Airport) Concourse B Environmental Assessment (EA). The noise analysis was prepared to comply with the National Environmental Policy Act (NEPA) of 1969; Federal Aviation Administration (FAA) Order 1050.1F, Environmental Impacts: Policies and Procedures; and FAA Order 5050.4B, NEPA Implementing Instructions for Airport Actions. The following describes the regulatory background, noise analysis methodology, noise model input data, and noise exposure results.

C.1.1 Regulatory Guidelines and Aircraft Noise Model

The noise analysis was developed using the FAA's Aviation Environmental Design Tool (AEDT) Version 3e. The AEDT is the required FAA tool to evaluate potential noise impacts from actions subject to NEPA. The AEDT produces aircraft noise contours that delineate areas of equal day-night average sound level (DNL). The DNL is a 24-hour time-weighted sound level that is expressed in A-weighted decibels. The FAA and other federal agencies use DNL as the primary measure of noise impact because it: correlates well with the results of attitudinal surveys regarding noise; increases with the duration of noise events; and accounts for an increased sensitivity to noise at night by increasing each noise event that occurs during nighttime hours (i.e., 10:00 pm to 6:59 am) by 10 decibels (dB).

The AEDT defines a network of grid points at ground level around an airport. The model then selects the shortest distance from each grid point to each flight track and computes the noise exposure generated by each aircraft operation, along each flight track. Customizations are applied for atmospheric acoustical attenuation, acoustical shielding of the aircraft engines by the aircraft itself, and aircraft speed variations. The noise exposure levels for each aircraft are then summed at each grid location. The cumulative noise exposure levels at all grid points are then used to develop aviation noise exposure contours for selected compatible land use values (e.g., DNL 65, 70 and 75).

Guidelines regarding the compatibility of land uses within various DNL contour intervals are specified in *Appendix A of 14 Code of Federal Regulations (CFR) Part 150*. As shown in *Table C-1*, the FAA identifies, as a function of annual (365-day average) DNL values, land uses which are compatible and land uses that are not compatible in an airport environ. The FAA determined that all the land uses listed in the table are compatible with aircraft noise exposure below the 65 DNL contour. When evaluating land use compatibility, attention is therefore focused on land uses within the 65 DNL contour or greater.

	DNL Expressed in dB(A)					
Land Use	Below 65	65-70	70-75	75-80	70-85	Over 85
Reside	ntial					
Residential, other than mobile homes and transient lodgings	Y	N(1)	N(1)	N	N	Ν
Mobile home parks	Y	N	N	N	N	N
Transient lodgings	Y	N(1)	N(1)	N(1)	N	Ν
Public	Use					
Schools	Y	N(1)	N(1)	N	N	Ν
Hospitals and nursing homes	Y	25	30	N	N	N
Churches, auditoriums, and concert halls	Y	25	30	N	N	Ν
Governmental services	Y	Y	25	30	N	Ν
Transportation	Y	Y	Y(2)	Y(3)	Y(4)	Y(4)
Parking	Y	Y	Y(2)	Y(3)	Y(4)	N
Commerc	ial Use					
Offices, business and professional	Y	Y	25	30	N	Ν
Wholesale and retail—building materials, hardware and farm equipment	Y	Y	Y(2)	Y(3)	Y(4)	Ν
Retail trade—general	Y	Y	25	30	N	N
Utilities	Y	Y	Y(2)	Y(3)	Y(4)	N
Communication	Y	Y	25	30	N	Ν
Manufacturing a	nd Produ	iction				
Manufacturing, general	Y	Y	Y(2)	Y(3)	Y(4)	Ν
Photographic and optical	Y	Y	25	30	N	N
Agriculture (except livestock) and forestry	Y	Y(6)	Y(7)	Y(8)	Y(8)	Y(8)
Livestock farming and breeding	Y	Y(6)	Y(7)	N	N	N
Mining and fishing, resource production and extraction	Y	Y	Y	Y	Y	Y
Recreat	ional					
Outdoor sports arenas and spectator sports	Y	Y(5)	Y(5)	N	N	Ν
Outdoor music shells, amphitheaters	Y	N	N	N	N	N
Nature exhibits and zoos	Y	Y	N	N	N	Ν
Amusements, parks, resorts and camps	Y	Y	Y	N	N	N
Golf courses, riding stables and water recreation Table Notes: SLUCM=Standard Land Use Coding Manual. Y (Yes) = Land Use and relat	Y	Y	25	30	N	N

TABLE C-1: FAA LAND USE COMPATIBILITY GUIDELINES – 14 CFR PART 150

Table Notes: SLUCM=Standard Land Use Coding Manual. Y (Yes) = Land Use and related structures compatible without restrictions. N (No) = Land Use and related structures are not compatible and should be prohibited. NLR = Noise Level Reduction (outdoor to indoor) to be achieved through incorporation of noise attenuation into the design and construction of the structure.

25, 30, or 35=Land use and related structures generally compatible; measures to achieve NLR of 25, 30, or 35 dB must be incorporated into design and construction of structure.

(1) Where the community determines that residential or school uses must be allowed, measures to achieve outdoor to indoor Noise Level Reduction (NLR) of at least 25 dB and 30 dB should be incorporated into building codes and be considered in individual approvals. Normal residential construction can be expected to provide a NLR of 20 dB, thus, the reduction requirements are often stated as 5, 10 or 15 dB over standard construction and normally assume mechanical ventilation and closed windows year-round. However, the use of NLR criteria will not eliminate outdoor noise problems. (2) Measures to achieve NLR 25 dB must be incorporated into the design and construction of portions of these buildings where the public is received, office areas, noise sensitive areas or where the normal noise level is low. (3) Measures to achieve NLR of 30 dB must be incorporated into the design and construction of portions of these buildings where the normal noise level is low. (4) Measures to achieve NLR 35 dB must be incorporated into the design and construction of portions of these buildings where the public is received, office areas, noise sensitive areas or where the public is received, office areas, noise sensitive areas or where the public is received, office areas, noise sensitive areas or where the public is received, office areas, noise sensitive areas or where the public is received, office areas, noise sensitive areas or where the public is received, office areas, noise sensitive areas or where the normal level is low. (5) Land use compatible provided special sound reinforcement systems are installed. (6) Residential buildings require an NLR of 25. (7) Residential buildings require an NLR of 30. (8) Residential buildings not permitted.

C.1.2 Affected Environment

In the development of DNL contours, the AEDT uses both default and airport-specific factors. The default factors include meteorological data, engine noise levels, thrust settings, aircraft arrival and departure flight profiles and aircraft speed. The airport-specific factors include the number of aircraft operations, the types of aircraft, runway use, the assignment of aircraft operations to flight tracks, operational time (day/night), and, for departures, the stage (i.e., trip) length. The following describes these data.

C.1.2.1 Meteorological Data

The AEDT accounts for the influences of meteorological conditions on aircraft performance and atmospheric sound absorption. Meteorological conditions affect the transmission of aircraft noise through the air. Humidity and temperature materially affect the transmission of air-to-ground sound through absorption associated with the instability and viscosity of the air. The AEDT uses temperature and relative humidity to calculate atmospheric absorption coefficients, which in turn are used to adjust aircraft performance and noise propagation. The average-annual meteorological conditions included in the AEDT for the airport are:

Temperature: 69.1° Fahrenheit Barometric pressure: 1013.6 millibars Relative humidity: 77.0%

C.1.2.2 2022 Aircraft Operations and Fleet

The aircraft operations¹ modeled for 2022 were obtained from the FAA's Air Traffic Activity System (ATADS) for fiscal year 2022 (October 1, 2021, through September 30, 2022). These data, by aircraft category, are provided in *Table C-2*. As shown, the 2022 annual operations totaled 99,451, or an average of approximately 272 operations per day.

TABLE C-1: 2022 ANNUAL AIRCRAFT OPERATIONS

Air Carrier	Air Taxi & Commuter	General Aviation	Military	Total
62,658	12,912	15,281	8,600	99,451

Source: FAA ATADS (October 1, 2021, through September 30, 2022)

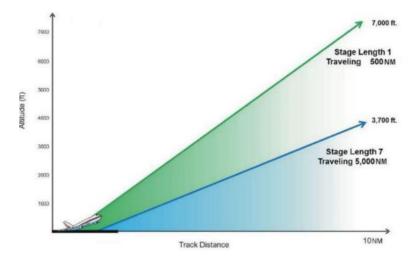
¹ An aircraft operation is defined as one arrival or one departure.

For the purposes of preparing DNL contours, aircraft operational data were segregated by aircraft type. Data from the JAA's Virtower[™] Airport Operations Tracking System (system) was used to develop the civilian AEDT aircraft fleet mix. The system records the aircraft type, the operation type (arrival or departure), the runway assignment, and the time that the aircraft operation occurred. System data from October 2021 through September 2022 was obtained and each aircraft type was assigned the corresponding AEDT aircraft type. All aircraft that operated at the Airport in 2022 were in the AEDT model and no aircraft substitutions were required. As required for use in the AEDT, annual aircraft operations were converted to average-day operations.

The Florida Air National Guard (FANG) 125th Fighter Wing is located on Airport property. The FANG 125th Fighter Wing currently operates a fleet of F-15C jet aircraft. The F-15C aircraft was used to model the military jet operations at the Airport. Additional information used to develop the military aircraft fleet mix was data included in the *Draft Noise Analysis in Support of United States Air Force F-35A Operational Beddown Air National Guard Environmental Impact Statement (EIS), March 2018,* prepared for the U.S. Air Force (Cardno, 2018).

Aircraft operations modeled in the AEDT are assigned as occurring during daytime (7:00 a.m. to 9:59 p.m.) or nighttime (10:00 p.m. to 6:59 a.m.). The DNL calculation includes an additional weight of 10 decibels for those aircraft events occurring at night. The 2022 modeled aircraft operations and fleet is provided in *Table C-3*.

Aircraft Type (s)	AEDT	Annual	Average Annual		al Day
	Aircraft	Operations	Day	Night	Total
Embraer 175	EMB175	15,811	37.95	5.37	43.32
Boeing 737-800/900	737800	9,317	19.11	6.41	25.53
Boeing 757-200	757PW	8,897	19.01	5.36	24.38
Airbus A320-200	A320-211	7,434	16.12	4.25	20.37
Boeing 737-700	737700	7,427	17.09	3.26	20.35
Canadair CRJ 700/900	CRJ9-ER	5,972	15.21	1.15	16.36
Airbus A319-100	A319-131	5,451	12.26	2.68	14.94
Embraer 190	EMB190	2,746	5.78	1.74	7.52
Embraer 170	EMB170	2,528	6.54	0.39	6.93
Boeing 767-300	767300	2,089	4.13	1.59	5.72
Airbus A321-200	A321-232	1,916	3.84	1.41	5.25
Airbus A300	A300B4-203	1,242	2.47	0.93	3.40
Embraer 135/145	EMB145	882	2.38	0.03	2.42
Airbus A320neo	A320-271N	744	2.02	0.02	2.04
Boeing 737 MAX8	7378MAX	730	1.49	0.51	2.00
Beechcraft 1900	1900D	612	1.53	0.14	1.68
Boeing 717-200	717200	579	1.58	0.00	1.59
ATR-42	DHC8	381	1.03	0.01	1.04
Dash 8-300	DHC830	380	0.99	0.05	1.04


TABLE C-3: 2022 EXISTING CONDITION AIRCRAFT OPERATIONS AND FLEET MIX

Aircraft Type (s)	AEDT	Annual	Avera	ge Annua	al Day
	Aircraft	Operations	Day	Night	Total
Boeing 757-300	757300	160	0.44	0.00	0.44
Boeing 737-400	737400	103	0.27	0.01	0.28
Boeing 737-300	737300	97	0.25	0.01	0.27
Boeing 747-400	747400	45	0.08	0.04	0.12
Challenger 300/600	CL600	18	0.05	0.00	0.05
King Air/Super King Air	DHC6	8	0.02	0.00	0.02
Learjet 35/40/45/55/60/75	LEAR35	1,822	4.51	0.48	4.99
Cessna 560 Citation XLS	CNA560XL	1,335	3.52	0.14	3.66
Citation II/Bravo, Premier, Phenom 300	CNA55B	1,010	2.64	0.13	2.77
Cessna Citation CJ1/CJ3/CJ4	CNA525C	995	2.62	0.10	2.73
Beechcraft Beechjet	MU3001	984	2.57	0.13	2.70
Cessna Citation Sovereign/Latitude	CNA680	860	2.29	0.06	2.36
Gulfstream G280	CL601	774	1.98	0.14	2.12
Challenger 300/600	CL600	723	1.91	0.07	1.98
Cessna Citation Ultra/Encore	CNA560E	569	1.24	0.32	1.56
Gulfstream GV/G500/G550	GV	533	1.38	0.08	1.46
Cessna Citation X, Falcon 2000	CNA750	471	1.23	0.06	1.29
Dassault Falcon 50/900	FAL900EX	338	0.89	0.03	0.92
Gulfstream GIV/G400	GIV	326	0.83	0.06	0.89
Cirrus Vision, Citation Mustang	CNA510	238	0.63	0.03	0.65
IAI Astra/Galaxy	IA1125	150	0.38	0.03	0.41
Cessna Citation CJ1/CJ2/CJ3	CNA500	79	0.14	0.07	0.22
Cessna Citation III	CIT3	72	0.19	0.01	0.20
Bombardier Global 7500	BD-700-1A10	62	0.16	0.01	0.17
Gulfstream G650	G650ER	60	0.16	0.00	0.16
Eclipse 500	ECLIPSE500	48	0.12	0.01	0.13
Bombardier Global 5000	BD-700-1A11	29	0.07	0.01	0.08
King Air/Super King Air	DHC6	762	1.97	0.11	2.09
Pilatus PC-12, Cessna 208, Socata TBM9	CNA208	199	0.50	0.04	0.54
Cessna 172/177	CNA172	1,492	3.75	0.35	4.10
Cessna 152	GASEPF	564	1.37	0.18	1.54
Piper 46 Malibu, Lancair 4, Bonanza 36	GASEPV	264	0.66	0.06	0.72
Piper Seminole, Diamond 42/62	PA30	211	0.46	0.12	0.58
Baron 58, Cessna 310/414	BEC58P	162	0.42	0.03	0.44
Cirrus SR20/22	COMSEP	150	0.39	0.02	0.41
Boeing P-8	737800	5,232	14.33	0.00	14.33
F-15	F15E20	3,368	9.23	0.00	9.23
Total		99,451	234.20	38.27	272.47

Source: FAA ATADS; Virtower™; RS&H, 2022

C.1.2.3 Departure Stage Lengths

The noise exposure from aircraft departures varies depending on takeoff weight. For example, a fullyloaded aircraft departing on a long-haul flight² typically weighs more on departure than the same fully loaded aircraft departing on a short-haul flight³, due to the weight of the additional fuel needed to travel a longer distance. A heavier aircraft typically requires higher power (thrust settings) to reach its takeoff speed, uses more runway length, and climbs at a slower rate than lighter aircraft (see *Figure C-*1). To account for this, the AEDT contains 11 departure climb profiles (corresponding to different departure weights), depending on the type of aircraft. These profiles represent aircraft origin-todestination trip lengths from less than 500 nautical miles to over 8,500 nautical miles. The distances for each stage length and the percentage of operations modeled for the air carrier aircraft for the noise analysis are shown in *Table C-4*. All general aviation and military aircraft were modeled with a Stage Length 1.

C.1.2.4 Runway Use and Modeled Aircraft Flight Tracks

Runway use refers to the frequency with which aircraft use each runway end for departures and arrivals. The more often a runway is used, the more noise is generated in areas located off each end of that runway. Wind direction and speed primarily dictate the runway directional use (or flow) of airports. From a safety and operational standpoint, it is preferable for aircraft to arrive and depart into the wind.

JAX has two runways, Runway 8/26 which is 10,000 feet long and 150 feet wide and Runway 14/32 which is 7,701 feet long, and 150 feet wide. At JAX, the airport flow is either to the east (i.e., aircraft arrive and depart on Runways 8 or 14) or to the west (i.e., aircraft arrive and depart on Runways 26 or 32). Modeled runway use by aircraft category is included in *Table C-5*.

² Long-haul are flights lasting greater than 6 hours

³ Short-haul are flights lasting 3 hours or less

	Stage Length						
AEDT Aircraft	1	2	3	Total			
	<500nm	501-1000nm	1001-1500nm				
717200		100%		100%			
737300	100%			100%			
737400	100%			100%			
737700	85%	15%		100%			
737800	30%	70%		100%			
747400		100%		100%			
757300	100%			100%			
767300		100%		100%			
1900D	100%			100%			
7378MAX		100%		100%			
757PW	30%	70%		100%			
A300B4-203		100%		100%			
A319-131	30%	70%		100%			
A320-211		100%		100%			
A320-271N			100%	100%			
A321-232	100%			100%			
CL600	100%			100%			
CRJ9-ER	45%	55%		100%			
DHC6	100%			100%			
DHC8	100%			100%			
DHC830	100%			100%			
EMB145	100%			100%			
EMB170		100%		100%			
EMB175	50%	50%		100%			
EMB190		100%		100%			

TABLE C-4: AIRCRAFT DEPARTURE STAGE LENGTHS

Notes: nm = nautical miles

Source: Virtower™; RS&H, 2022

	Runway End					
Category	8	26	14	32	Total	
		De	epartures	s Day		
Air Carrier	58%	30%	5%	7%	100%	
General Aviation	53%	33%	11%	3%	100%	
Military	48%	32%	17%	3%	100%	
		Dej	partures	Night		
Air Carrier	57%	25%	4%	14%	100%	
General Aviation	58%	30%	9%	3%	100%	
Military	-	-	-	-	-	
		ŀ	Arrivals [Day		
Air Carrier	53%	35%	10%	2%	100%	
General Aviation	53%	33%	10%	4%	100%	
Military	52%	33%	8%	7%	100%	
		A	rrivals N	ight		
Air Carrier	53%	32%	14%	1%	100%	
General Aviation	65%	29%	5%	1%	100%	
Military	-	-	-	-	-	

TABLE C-5: MODELED RUNWAY USE PERCENTAGES BY AIRCRAFT CATEGORY

Source: Virtower™; RS&H, 2022

Flight tracks refer to the route an aircraft follows when arriving to or departing from a runway. The location of flight tracks is an important factor in determining the geographic distribution of noise contours on the ground. The AEDT uses airport-specific ground tracks and vertical flight profiles to compute three-dimensional flight paths for each modeled aircraft operation. The "default" AEDT vertical profiles, which consist of altitude, speed, and thrust settings, are compiled from data provided by aircraft manufacturers. The modeled flight tracks were developed from the recently prepared *Draft Noise Analysis in Support of United States Air Force F-35A Operational Beddown Air National Guard EIS.* Current radar flight track data was then reviewed to adjust the tracks as needed. The modeled flight tracks for east flow and west flow are depicted on *Figures C-2* and *C-3*, respectively.

C.1.2.5 2022 DNL Contours

The 2022 65-75 DNL contours are provided on *Figure C-4*. *Table C-6* identifies the areas within the DNL contour ranges. As shown in the table, the total area within the 65 DNL and greater contour is 4.49 square miles and is primarily located within the limits of the airport property boundary. The 65 DNL encompasses 0.7 square miles of off-Airport property that is primarily commercial and industrial compatible land uses. One residence, located near the intersection of Interstate 95 and Pecan Park Road, is within the contour and is exposed to 65.0 DNL for the 2022 condition.

DNL Contour Range	Area (sq. miles)
65-70	2.75
70-75	1.09
>75	0.65
Total	4.49

TABLE C-6: AREA WITHIN THE 2022 EXISTING CONDITION DNL CONTOURS

Source: RS&H, 2022

C.1.3 Environmental Consequences

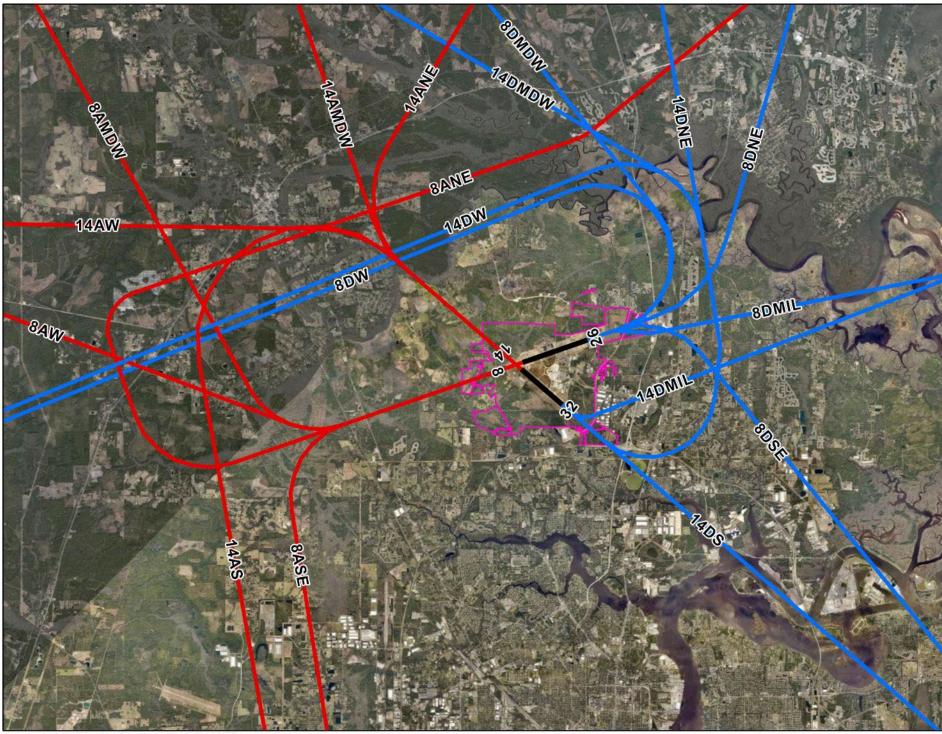
This section describes the methodology, significance thresholds pertaining to noise and compatible land uses, and the potential effects that the Proposed Project would have on aircraft noise exposure compared to the No Action Alternative for 2026 and 2031.

C.1.3.1 Methodology and Significance Threshold

The methodology for assessing noise exposure included preparing DNL contours for the No Action and Proposed Project for the years 2026 and 2031. The contours were developed to assess if a significant noise impact would occur.

Per FAA Order 1050.1F, "a significant noise impact would occur if the action would increase noise by DNL 1.5 dB or more for a noise sensitive area that is [already] exposed to noise at or above the DNL 65 dB noise exposure level, or that will be exposed at or above the DNL 65 dB level due to a DNL 1.5 dB or greater increase, when compared to the no action alternative for the same timeframe." Noise sensitive areas generally include residential neighborhoods; educational, health, and religious facilities; and cultural and historic sites.

Attachment 1 describes the methodology used to develop the 2026 and 2031 No Action Alternative and Proposed Project total aircraft operations used in this aircraft noise analysis.

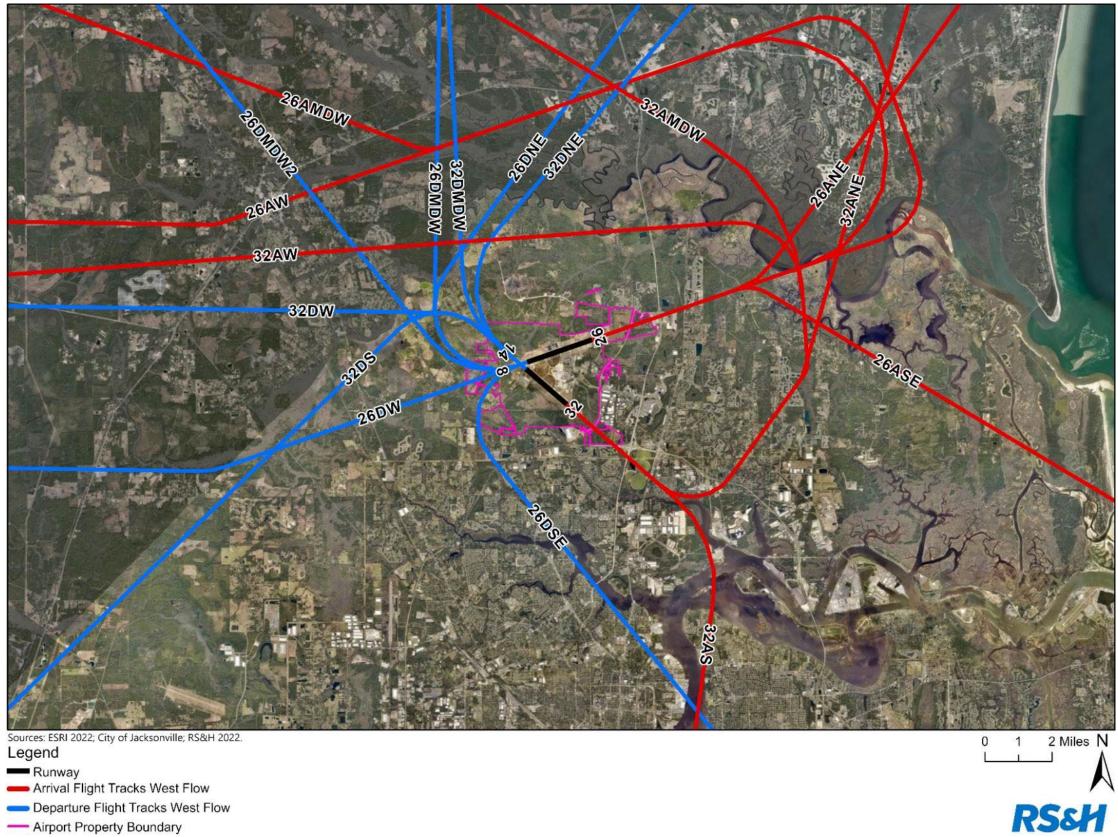

C.1.3.2 2026 Noise Exposure

Annual aircraft operations for the 2026 No Action Alternative total 109,077, or an average of 299 operations per day. The 2026 No Action Alternative aircraft fleet mix was determined by multiplying the percentages by aircraft type that occurred in 2022 by the FAA TAF operations forecast to occur in 2026.

The 2026 Proposed Project annual operations total 116,814, or an average of 320 operations per day. The 2026 Proposed Project aircraft fleet mix was determined by multiplying the percentages by aircraft type that occurred in 2022 by the FAA TAF operations forecast to occur in 2026. The 2026 Proposed Project includes an additional 7,737 passenger aircraft operations. The additional 7,737 passenger aircraft operations were distributed proportionally among the passenger aircraft fleet mix that occurred in 2022.

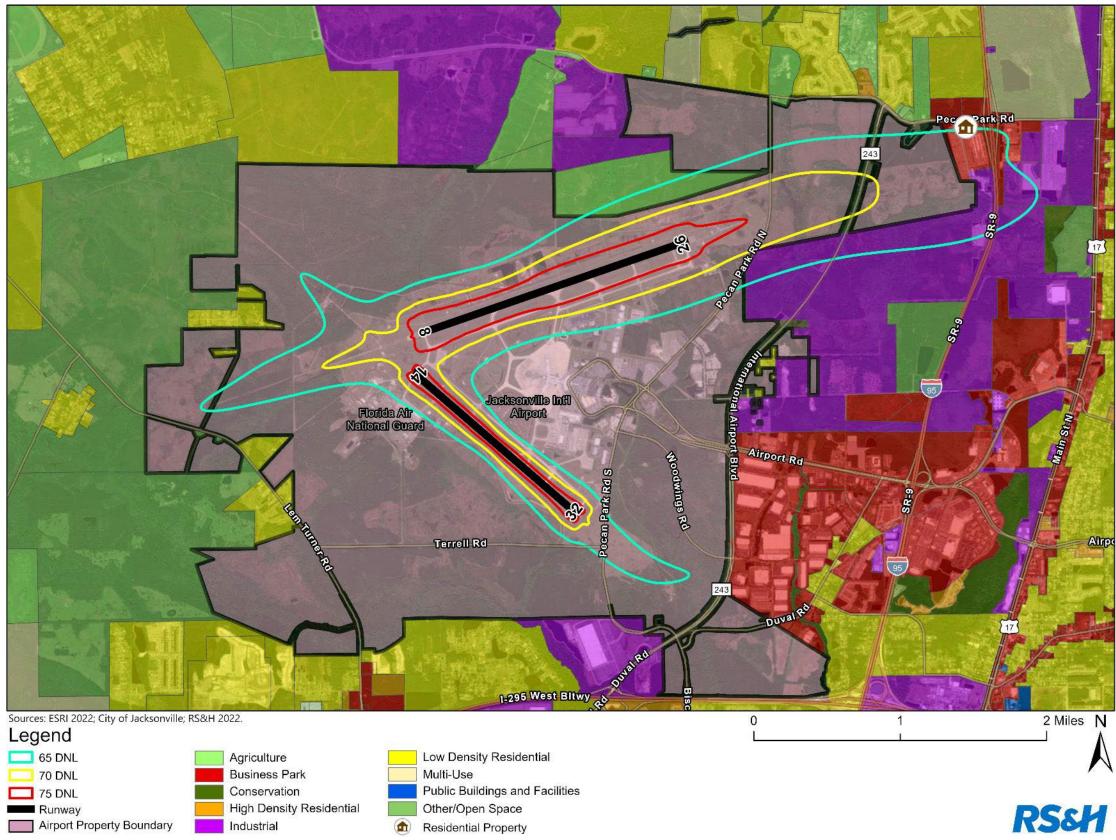
The runway use, flight tracks, and time of day modeled for the 2026 No Action Alternative and the Proposed Project were the same as the 2022 condition. The 2026 aircraft operations and fleet mix for the No Action Alternative and the Proposed Project are shown in *Tables C-7* and *C-8*.

FIGURE C-2: MODELED FLIGHT TRACKS – EAST FLOW


Sources: ESRI 2022; City of Jacksonville; RS&H 2022. Legend

- Runway
 Arrival Flight Tracks East Flow
- Departure Flight Tracks East Flow
- Airport Property Boundary

[This page intentionally left blank.]


FIGURE C-3: MODELED FLIGHT TRACKS – WEST FLOW

- Airport Property Boundary

[This page intentionally left blank.]

FIGURE C-4: 2022 DNL CONTOURS

Aircraft Type (s)	AEDT	Annual	Avera	ge Annua	l Day
	Aircraft	Operations	Day	Night	Sum
Embraer 175	EMB175	17,860	42.87	6.06	48.93
Boeing 737-800/900	737800	10,524	21.59	7.24	28.83
Boeing 757-200	757PW	10,050	21.48	6.05	27.53
Airbus A320-200	A320-211	8,397	18.20	4.80	23.01
Boeing 737-700	737700	8,389	19.30	3.69	22.98
Canadair CRJ 700/900	CRJ9-ER	6,746	17.19	1.30	18.48
Airbus A319-100	A319-131	6,158	13.85	3.02	16.87
Embraer 190	EMB190	3,102	6.53	1.97	8.50
Embraer 170	EMB170	2,855	7.39	0.43	7.82
Boeing 767-300	767300	1,666	3.29	1.28	4.56
Airbus A321-200	A321-232	2,165	4.35	1.59	5.93
Airbus A300	A300B4-203	990	1.96	0.75	2.71
Embraer 135/145	EMB145	997	2.69	0.04	2.73
Airbus A320neo	A320-271N	841	2.28	0.03	2.30
Boeing 737 MAX8	7378MAX	825	1.68	0.58	2.26
Beechcraft 1900	1900D	691	1.73	0.16	1.89
Boeing 717-200	717200	654	1.79	0.00	1.79
ATR-42	DHC8	431	1.17	0.01	1.18
Dash 8-300	DHC830	429	1.12	0.06	1.18
Boeing 757-300	757300	181	0.49	0.01	0.50
Boeing 737-400	737400	116	0.31	0.01	0.32
Boeing 737-300	737300	110	0.29	0.01	0.30
Boeing 747-400	747400	36	0.06	0.04	0.10
Challenger 300/600	CL600	21	0.06	0.00	0.06
King Air/Super King Air	DHC6	9	0.02	0.01	0.02
Learjet 35/40/45/55/60/75	LEAR35	1,837	4.55	0.49	5.03
Cessna 560 Citation XLS	CNA560XL	1,346	3.56	0.13	3.69
Citation II/Bravo, Premier, Phenom 300	CNA55B	1,018	2.66	0.13	2.79
Cessna Citation CJ1/CJ3/CJ4	CNA525C	1,003	2.65	0.10	2.75
Beechcraft Beechjet	MU3001	992	2.59	0.13	2.72
Cessna Citation Sovereign/Latitude	CNA680	867	2.31	0.07	2.38
Gulfstream G280	CL601	780	1.99	0.14	2.14
Challenger 300/600	CL600	729	1.92	0.08	2.00
Cessna Citation Ultra/Encore	CNA560E	573	1.25	0.32	1.57
Gulfstream GV/G500/G550	GV	537	1.39	0.08	1.47
Cessna Citation X, Falcon 2000	CNA750	475	1.24	0.07	1.30
Dassault Falcon 50/900	FAL900EX	340	0.90	0.03	0.93

TABLE C-7: 2026 NO ACTION ALTERNATIVE AIRCRAFT OPERATIONS AND FLEET MIX

Aircraft Type (s)	AEDT	Annual	Avera	ge Annua	l Day
	Aircraft	Operations	Day	Night	Sum
Gulfstream GIV/G400	GIV	329	0.84	0.07	0.90
Cirrus Vision, Citation Mustang	CNA510	240	0.62	0.03	0.66
IAI Astra/Galaxy	IA1125	152	0.38	0.03	0.42
Cessna Citation CJ1/CJ2/CJ3	CNA500	79	0.14	0.08	0.22
Cessna Citation III	CIT3	72	0.19	0.01	0.20
Bombardier Global 7500	BD-700-1A10	63	0.16	0.01	0.17
Gulfstream G650	G650ER	60	0.16	0.00	0.16
Eclipse 500	ECLIPSE500	49	0.12	0.01	0.13
Bombardier Global 5000	BD-700-1A11	29	0.08	0.00	0.08
King Air/Super King Air	DHC6	769	1.99	0.12	2.11
Pilatus PC-12, Cessna 208, Socata TBM9	CNA208	200	0.50	0.04	0.55
Cessna 172/177	CNA172	2,333	5.84	0.55	6.39
Cessna 152	GASEPF	568	1.38	0.18	1.56
Piper 46 Malibu, Lancair 4, Bonanza 36	GASEPV	266	0.66	0.07	0.73
Piper Seminole, Diamond 42/62	PA30	212	0.46	0.12	0.58
Baron 58, Cessna 310/414	BEC58P	163	0.42	0.02	0.45
Cirrus SR20/22	COMSEP	151	0.39	0.02	0.41
Boeing P-8	737800	5,232	14.33	0.00	14.33
F-15	F15E20	3,368	9.23	0.00	9.23
		109,077	256.59	42.25	298.84

Source: FAA TAF; Virtower™; RS&H, 2023

Note: Totals may not sum due to rounding

TABLE C-8: 2026 PROPOSED PROJECT AIRCRAFT OPERATIONS AND FLEET MIX

Aircraft Type (s)	AEDT	Annual	Avera	ge Annua	al Day
	Aircraft	Operations	Day	Night	Total
Boeing 737-800/900	737800	11,523	23.64	7.93	31.57
Boeing 757-200	757PW	11,004	23.52	6.63	30.15
Airbus A320-200	A320-211	9,194	19.93	5.26	25.19
Boeing 737-700	737700	9,185	21.13	4.04	25.16
Canadair CRJ 700/900	CRJ9-ER	7,386	18.82	1.42	20.24
Airbus A319-100	A319-131	6,742	15.17	3.30	18.47
Embraer 190	EMB190	3,396	7.15	2.16	9.30
Embraer 170	EMB170	3,126	8.09	0.47	8.56
Boeing 767-300	767300	1,666	3.29	1.28	4.56
Airbus A321-200	A321-232	2,370	4.76	1.74	6.49
Airbus A300	A300B4-203	990	1.96	0.75	2.71
Embraer 135/145	EMB145	1,091	2.95	0.04	2.99

Aircraft Type (s)	AEDT	Annual	Average Annual D		l Day
	Aircraft	Operations	Day	Night	Total
Airbus A320neo	A320-271N	921	2.49	0.03	2.52
Boeing 737 MAX8	7378MAX	903	1.84	0.63	2.47
Beechcraft 1900	1900D	756	1.89	0.18	2.07
Boeing 717-200	717200	716	1.96	0.00	1.96
ATR-42	DHC8	472	1.28	0.01	1.29
Dash 8-300	DHC830	470	1.22	0.06	1.29
Boeing 757-300	757300	198	0.53	0.01	0.54
Boeing 737-400	737400	127	0.34	0.01	0.35
Boeing 737-300	737300	120	0.32	0.01	0.33
Boeing 747-400	747400	36	0.06	0.04	0.10
Challenger 300/600	CL600	23	0.06	0.00	0.06
King Air/Super King Air	DHC6	10	0.02	0.01	0.03
Learjet 35/40/45/55/60/75	LEAR35	1,837	4.55	0.49	5.03
Cessna 560 Citation XLS	CNA560XL	1,346	3.56	0.13	3.69
Citation II/Bravo, Premier, Phenom 300	CNA55B	1,018	2.66	0.13	2.79
Cessna Citation CJ1/CJ3/CJ4	CNA525C	1,003	2.65	0.10	2.75
Beechcraft Beechjet	MU3001	992	2.59	0.13	2.72
Cessna Citation Sovereign/Latitude	CNA680	867	2.31	0.07	2.38
Gulfstream G280	CL601	780	1.99	0.14	2.14
Challenger 300/600	CL600	729	1.92	0.08	2.00
Cessna Citation Ultra/Encore	CNA560E	573	1.25	0.32	1.57
Gulfstream GV/G500/G550	GV	537	1.39	0.08	1.47
Cessna Citation X, Falcon 2000	CNA750	475	1.24	0.07	1.30
Dassault Falcon 50/900	FAL900EX	340	0.90	0.03	0.93
Gulfstream GIV/G400	GIV	329	0.84	0.07	0.90
Cirrus Vision, Citation Mustang	CNA510	240	0.62	0.03	0.66
IAI Astra/Galaxy	IA1125	152	0.38	0.03	0.42
Cessna Citation CJ1/CJ2/CJ3	CNA500	79	0.14	0.08	0.22
Cessna Citation III	CIT3	72	0.19	0.01	0.20
Bombardier Global 7500	BD-700-1A10	63	0.16	0.01	0.17
Gulfstream G650	G650ER	60	0.16	0.00	0.16
Eclipse 500	ECLIPSE500	49	0.12	0.01	0.13
Bombardier Global 5000	BD-700-1A11	29	0.08	0.00	0.08
King Air/Super King Air	DHC6	769	1.99	0.12	2.11
Pilatus PC-12, Cessna 208, Socata TBM9	CNA208	200	0.50	0.04	0.55
Cessna 172/177	CNA172	2,333	5.84	0.55	6.39
Cessna 152	GASEPF	568	1.38	0.18	1.56
Piper 46 Malibu, Lancair 4, Bonanza 36	GASEPV	266	0.66	0.07	0.73
Piper Seminole, Diamond 42/62	PA30	212	0.46	0.12	0.58

Aircraft Type (s)	AEDT		Annual Average Annual [
	Aircraft	Operations	Day	Night	Total
Baron 58, Cessna 310/414	BEC58P	163	0.42	0.02	0.45
Cirrus SR20/22	COMSEP	151	0.39	0.02	0.41
Boeing P-8	737800	5,232	14.33	0.00	14.33
F-15	F15E20	3,368	9.23	0.00	9.23
Total		116,814	274.27	45.77	320.04

Source: FAA TAF; Virtower™; RS&H, 2023

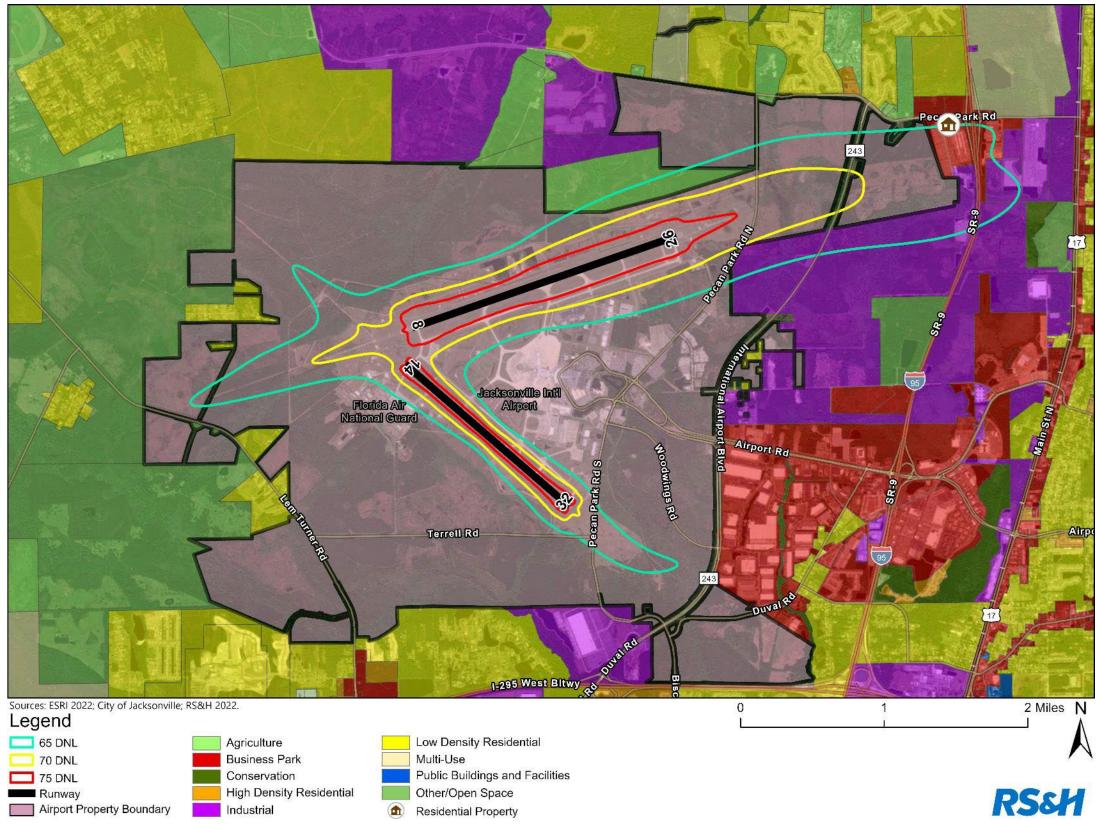
Note: Totals may not sum due to rounding

C.1.3.3 2026 DNL Contours

The 2026 No Action Alternative and Proposed Project 65-75 DNL contours are provided on *Figures C-5* and *C-6. Table C-9* identifies the areas within the DNL contour ranges. As shown in the table, the total area within the 65 DNL contour is 4.57 square miles for the No Action Alternative and 4.66 square miles for the Proposed Project. The No Action Alternative 65 DNL contour encompasses 0.7 square mile of off-Airport property, and the Proposed Project encompasses 0.73 square mile of off-Airport property. One residence near Interstate 95 and Pecan Park Road intersection is within the 65 DNL for both conditions. The residence is exposed to 65.25 DNL for the No Action Alternative and 65.39 DNL for the Proposed Project. Therefore, the residence would experience an increase of 0.14 DNL as a result of the Proposed Project. The 0.14 DNL increase is below the FAA significance threshold of DNL 1.5 dB.

DNL Contour Range	No Action Alternative (sq. miles)	Proposed Project (sq. miles)	Difference (sq. miles)
65-70	2.80	2.86	+0.06
70-75	1.11	1.13	+0.02
>75	0.66	0.67	+0.01
Total	4.57	4.66	+0.09

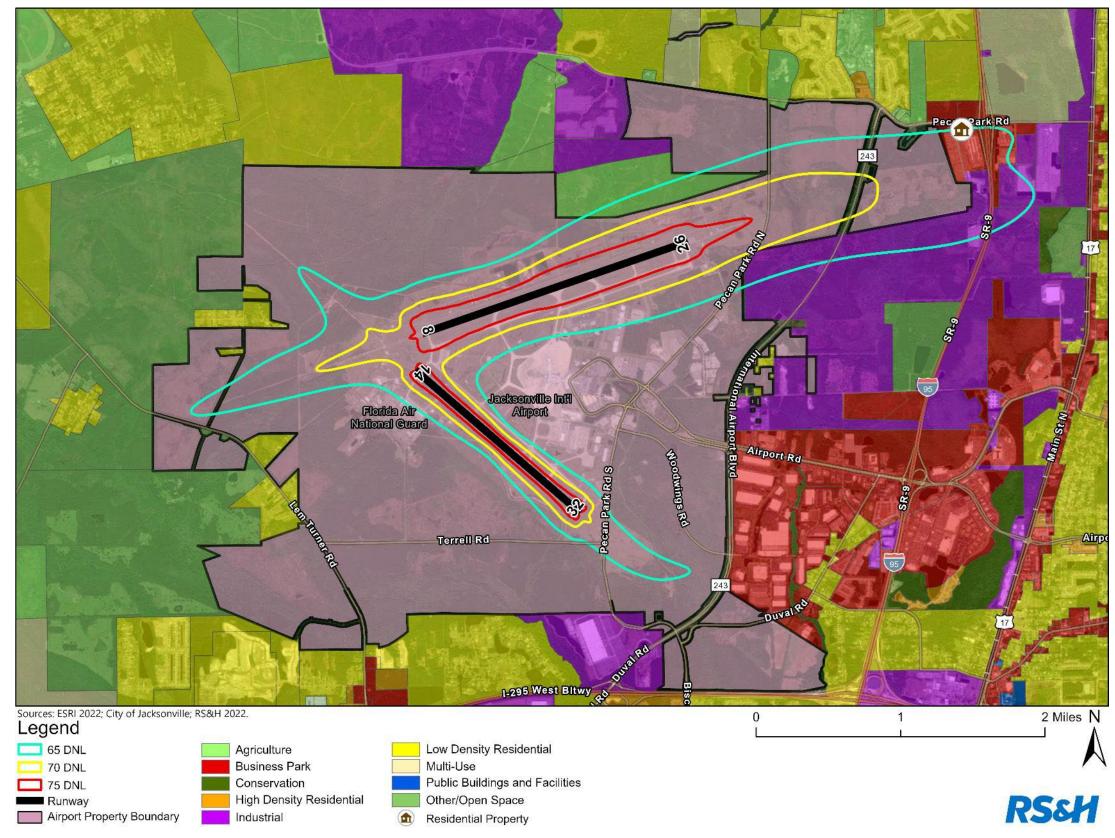
TABLE C-9: AREA WITHIN THE 2026 DNL CONTOURS


Source: RS&H, 2023

C.1.3.4 2031 Noise Exposure

Annual aircraft operations for the 2031 No Action Alternative total 118,843, or an average of 326 operations per day. The 2031 No Action Alternative aircraft fleet mix was determined by multiplying the percentages by aircraft type that occurred in 2022 by the FAA TAF operations forecast to occur in 2031.

The 2031 Proposed Project annual operations total 142,814, or an average of 391 operations per day. The 2031 Proposed Project aircraft fleet mix was determined by multiplying the percentages by aircraft type that occurred in 2022 by the FAA TAF operations forecast to occur in 2031. The 2031 Proposed Project includes an additional 23,971 passenger aircraft operations. The additional 23,971 passenger aircraft operations were distributed proportionally among the passenger aircraft fleet mix that occurred in 2022. The runway use, flight tracks, and time of day modeled for the 2031 No Action Alternative and the Proposed Project were the same as the 2022 condition. The 2031 aircraft operations and fleet mix for the No Action Alternative and the Proposed Project are shown in *Tables C-10* and *C-11*.


FIGURE C-5: 2026 NO ACTION ALTERNATIVE DNL CONTOURS

JAX Replacement Concourse B EA

[This page intentionally left blank.]

FIGURE C-6: 2026 PROPOSED PROJECT DNL CONTOURS

[This page intentionally left blank.]

Aircraft Type (s)	AEDT	Annual	Avera	ge Annua	l Day
	Aircraft	Operations	Day	Night	Sum
Embraer 175	EMB175	19,917	47.81	6.76	54.57
Boeing 737-800/900	737800	11,736	24.08	8.08	32.15
Boeing 757-200	757PW	11,208	23.96	6.75	30.71
Airbus A320-200	A320-211	9,364	20.30	5.36	25.65
Boeing 737-700	737700	9,356	21.52	4.11	25.63
Canadair CRJ 700/900	CRJ9-ER	7,523	19.16	1.45	20.61
Airbus A319-100	A319-131	6,867	15.45	3.36	18.81
Embraer 190	EMB190	3,459	7.28	2.20	9.48
Embraer 170	EMB170	3,184	8.24	0.48	8.72
Boeing 767-300	767300	1,768	3.49	1.35	4.84
Airbus A321-200	A321-232	2,414	4.85	1.77	6.61
Airbus A300	A300B4-203	1,051	2.08	0.79	2.88
Embraer 135/145	EMB145	1,112	3.00	0.04	3.05
Airbus A320neo	A320-271N	938	2.54	0.03	2.57
Boeing 737 MAX8	7378MAX	919	1.87	0.64	2.52
Beechcraft 1900	1900D	770	1.93	0.18	2.11
Boeing 717-200	717200	729	2.00	0.00	2.00
ATR-42	DHC8	480	1.30	0.01	1.32
Dash 8-300	DHC830	479	1.25	0.06	1.31
Boeing 757-300	757300	202	0.54	0.01	0.55
Boeing 737-400	737400	129	0.34	0.01	0.35
Boeing 737-300	737300	123	0.33	0.01	0.34
Boeing 747-400	747400	38	0.06	0.04	0.10
Challenger 300/600	CL600	23	0.06	0.00	0.06
King Air/Super King Air	DHC6	10	0.02	0.01	0.03
Learjet 35/40/45/55/60/75	LEAR35	1,856	4.59	0.49	5.08
Cessna 560 Citation XLS	CNA560XL	1,360	3.59	0.13	3.73
Citation II/Bravo, Premier, Phenom 300	CNA55B	1,029	2.69	0.13	2.82
Cessna Citation CJ1/CJ3/CJ4	CNA525C	1,014	2.68	0.10	2.78
Beechcraft Beechjet	MU3001	1,003	2.61	0.13	2.75
Cessna Citation Sovereign/Latitude	CNA680	876	2.33	0.07	2.40
Gulfstream G280	CL601	788	2.01	0.14	2.16
Challenger 300/600	CL600	737	1.94	0.08	2.02
Cessna Citation Ultra/Encore	CNA560E	579	1.26	0.32	1.59
Gulfstream GV/G500/G550	GV	543	1.41	0.08	1.49
Cessna Citation X, Falcon 2000	CNA750	480	1.25	0.07	1.32
Dassault Falcon 50/900	FAL900EX	344	0.91	0.03	0.94

TABLE C-10: 2031 NO ACTION ALTERNATIVE AIRCRAFT OPERATIONS AND FLEET MIX

Aircraft Type (s)	AEDT	Annual	Avera	ge Annua	al Day
	Aircraft	Operations	Day	Night	Sum
Gulfstream GIV/G400	GIV	332	0.84	0.07	0.91
Cirrus Vision, Citation Mustang	CNA510	243	0.63	0.03	0.67
IAI Astra/Galaxy	IA1125	153	0.39	0.03	0.42
Cessna Citation CJ1/CJ2/CJ3	CNA500	80	0.14	0.08	0.22
Cessna Citation III	CIT3	73	0.19	0.01	0.20
Bombardier Global 7500	BD-700-1A10	64	0.16	0.01	0.18
Gulfstream G650	G650ER	61	0.17	0.00	0.17
Eclipse 500	ECLIPSE500	49	0.12	0.01	0.13
Bombardier Global 5000	BD-700-1A11	30	0.08	0.00	0.08
King Air/Super King Air	DHC6	777	2.01	0.12	2.13
Pilatus PC-12, Cessna 208, Socata TBM9	CNA208	202	0.51	0.04	0.55
Cessna 172/177	CNA172	2,397	6.00	0.56	6.57
Cessna 152	GASEPF	574	1.39	0.18	1.57
Piper 46 Malibu, Lancair 4, Bonanza 36	GASEPV	269	0.67	0.07	0.74
Piper Seminole, Diamond 42/62	PA30	215	0.47	0.12	0.59
Baron 58, Cessna 310/414	BEC58P	165	0.43	0.02	0.45
Cirrus SR20/22	COMSEP	152	0.39	0.02	0.42
Boeing P-8	737800	5,232	14.33	0.00	14.33
F-15	F15E20	3,368	9.23	0.00	9.23
Total		118,843	278.91	46.69	325.60

Source: FAA TAF; Virtower™; RS&H, 2023

Note: Totals may not sum due to rounding

TABLE C-11: 2031 PROPOSED PROJECT AIRCRAFT OPERATIONS AND FLEET MIX

Aircraft Type (s)	AEDT	Annual	Average Annual Day			
	Aircraft	Operations	Day	Night	Sum	
Embraer 175	EMB175	25,167	60.41	8.54	68.95	
Boeing 737-800/900	737800	14,830	30.43	10.20	40.63	
Boeing 757-200	757PW	14,162	30.27	8.53	38.80	
Airbus A320-200	A320-211	11,832	25.65	6.77	32.42	
Boeing 737-700	737700	11,822	27.19	5.20	32.39	
Canadair CRJ 700/900	CRJ9-ER	9,506	24.22	1.83	26.04	
Airbus A319-100	A319-131	8,677	19.52	4.25	23.77	
Embraer 190	EMB190	4,371	9.20	2.77	11.98	
Embraer 170	EMB170	4,024	10.42	0.61	11.02	
Boeing 767-300	767300	1,768	3.49	1.35	4.84	
Airbus A321-200	A321-232	3,050	6.12	2.23	8.36	
Airbus A300	A300B4-203	1,051	2.08	0.79	2.88	

Aircraft Type (s)	AEDT	Annual	Avera	ge Annua	l Day
	Aircraft	Operations	Day	Night	Sum
Embraer 135/145	EMB145	1,405	3.80	0.05	3.85
Airbus A320neo	A320-271N	1,185	3.21	0.04	3.25
Boeing 737 MAX8	7378MAX	1,162	2.37	0.81	3.18
Beechcraft 1900	1900D	973	2.44	0.23	2.67
Boeing 717-200	717200	921	2.52	0.00	2.52
ATR-42	DHC8	607	1.65	0.01	1.66
Dash 8-300	DHC830	605	1.58	0.08	1.66
Boeing 757-300	757300	255	0.69	0.01	0.70
Boeing 737-400	737400	163	0.43	0.01	0.45
Boeing 737-300	737300	155	0.41	0.01	0.42
Boeing 747-400	747400	38	0.06	0.04	0.10
Challenger 300/600	CL600	29	0.08	0.00	0.08
King Air/Super King Air	DHC6	13	0.02	0.01	0.04
Learjet 35/40/45/55/60/75	LEAR35	1,856	4.59	0.49	5.08
Cessna 560 Citation XLS	CNA560XL	1,360	3.59	0.13	3.73
Citation II/Bravo, Premier, Phenom 300	CNA55B	1,029	2.69	0.13	2.82
Cessna Citation CJ1/CJ3/CJ4	CNA525C	1,014	2.68	0.10	2.78
Beechcraft Beechjet	MU3001	1,003	2.61	0.13	2.75
Cessna Citation Sovereign/Latitude	CNA680	876	2.33	0.07	2.40
Gulfstream G280	CL601	788	2.01	0.14	2.16
Challenger 300/600	CL600	737	1.94	0.08	2.02
Cessna Citation Ultra/Encore	CNA560E	579	1.26	0.32	1.59
Gulfstream GV/G500/G550	GV	543	1.41	0.08	1.49
Cessna Citation X, Falcon 2000	CNA750	480	1.25	0.07	1.32
Dassault Falcon 50/900	FAL900EX	344	0.91	0.03	0.94
Gulfstream GIV/G400	GIV	332	0.84	0.07	0.91
Cirrus Vision, Citation Mustang	CNA510	243	0.63	0.03	0.67
IAI Astra/Galaxy	IA1125	153	0.39	0.03	0.42
Cessna Citation CJ1/CJ2/CJ3	CNA500	80	0.14	0.08	0.22
Cessna Citation III	CIT3	73	0.19	0.01	0.20
Bombardier Global 7500	BD-700-1A10	64	0.16	0.01	0.18
Gulfstream G650	G650ER	61	0.17	0.00	0.17
Eclipse 500	ECLIPSE500	49	0.12	0.01	0.13
Bombardier Global 5000	BD-700-1A11	30	0.08	0.00	0.08
King Air/Super King Air	DHC6	777	2.01	0.12	2.13
Pilatus PC-12, Cessna 208, Socata TBM9	CNA208	202	0.51	0.04	0.55
Cessna 172/177	CNA172	2,397	6.00	0.56	6.57
Cessna 152	GASEPF	574	1.39	0.18	1.57
Piper 46 Malibu, Lancair 4, Bonanza 36	GASEPV	269	0.67	0.07	0.74

Aircraft Type (s)	AEDT	Annual	Average Annual Day			
	Aircraft	Operations	Day	Night	Sum	
Piper Seminole, Diamond 42/62	PA30	215	0.47	0.12	0.59	
Baron 58, Cessna 310/414	BEC58P	165	0.43	0.02	0.45	
Cirrus SR20/22	COMSEP	152	0.39	0.02	0.42	
Boeing P-8	737800	5,232	14.33	0.00	14.33	
F-15	F15E20	3,368	9.23	0.00	9.23	
Total		142,814	333.70	57.58	391.27	

Source: FAA TAF; Virtower™; RS&H, 2023

C.1.3.5 2031 DNL Contours

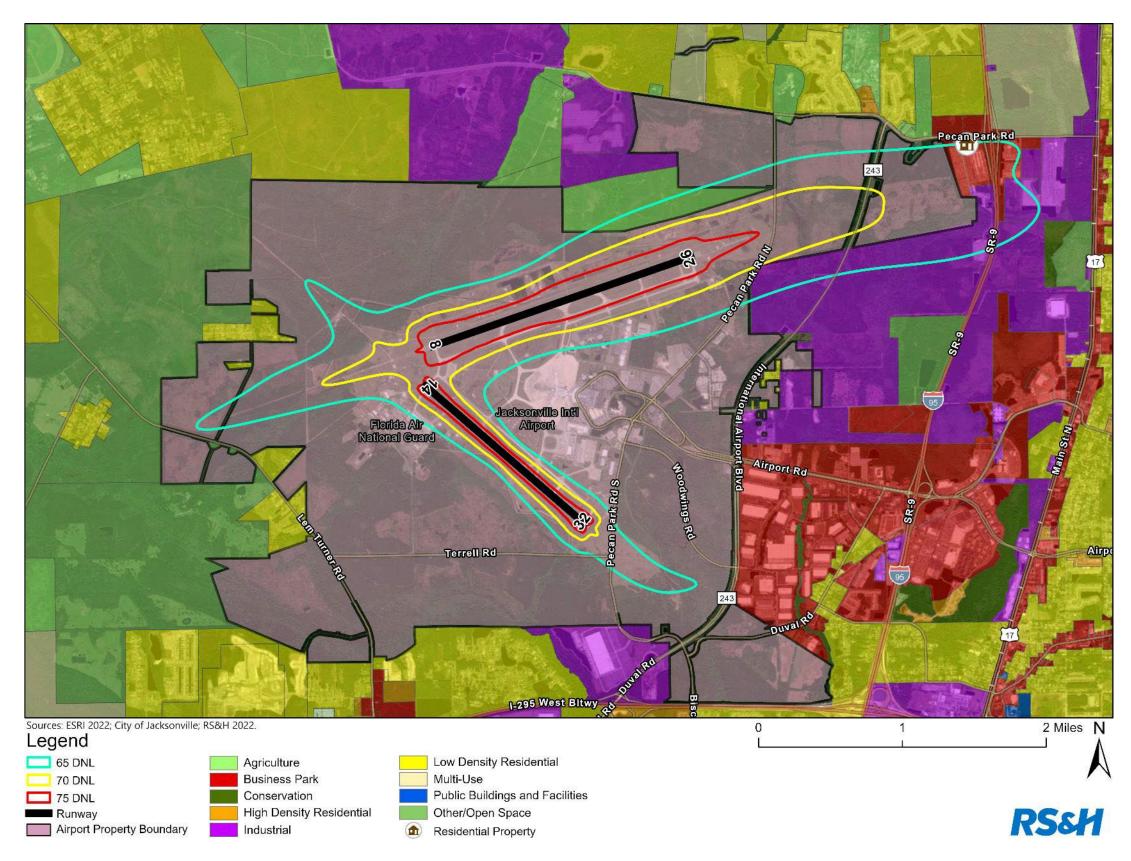
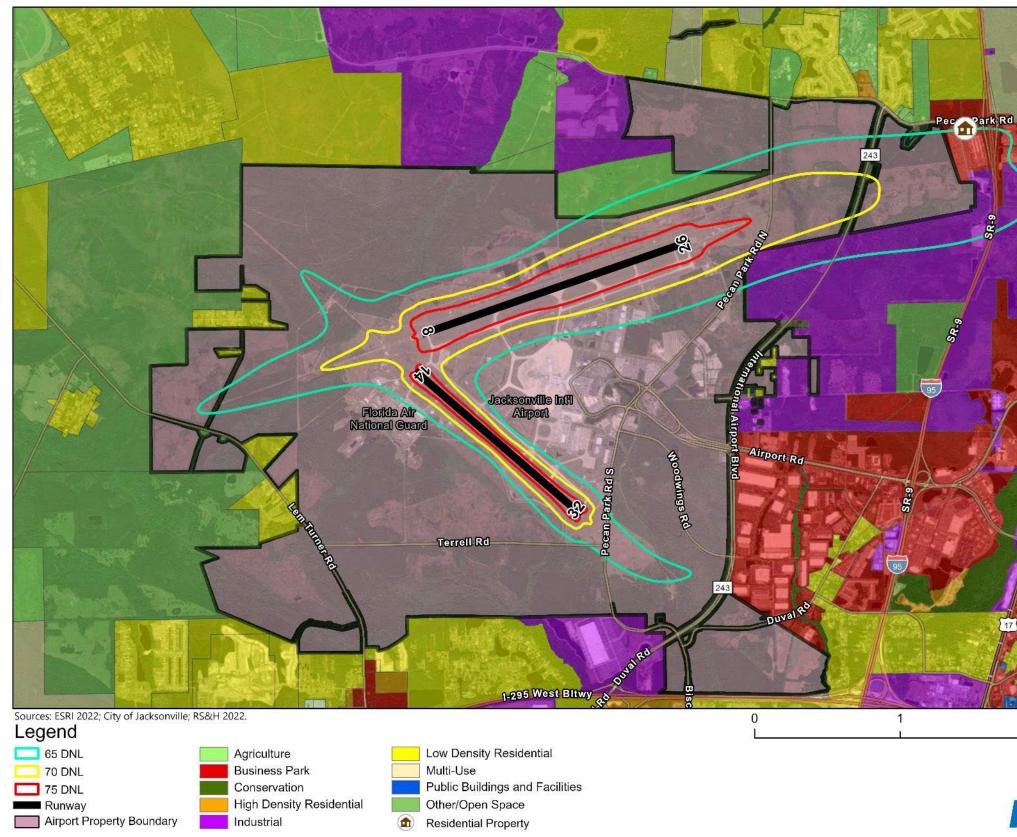

The 2031 No Action Alternative and Proposed Project 65-75 DNL contours are provided on *Figures C-7* and *C-8. Table C-12* identifies the areas within the DNL contour ranges. As shown in the table, the total area within the 65 DNL contour is 4.70 square miles for the No Action Alternative and 5.02 square miles for the Proposed Project. The No Action Alternative 65 DNL contour encompasses 0.74 square mile of off-Airport property, and the Proposed Project encompasses 0.82 square mile. One residence near Interstate 95 and Pecan Park Road intersection is within the 65 DNL for both conditions. The residence is exposed to 65.62 DNL for the No Action Alternative and 66.01 DNL for the Proposed Project. Therefore, the residence would experience an increase of 0.39 DNL as a result of the Proposed Project. The 0.39 DNL increase is below the FAA significance threshold of DNL 1.5 dB.

TABLE C-12: AREA WITHIN THE 2031 DNL CONTOURS

DNL Contour Range	No Action Alternative (sq. miles)	Proposed Project (sq. miles)	Difference (sq. miles)
65-70	2.88	3.08	+0.20
70-75	1.14	1.21	+0.07
>75	0.68	0.73	+0.05
Total	4.70	5.02	+0.32

Source: RS&H, 2023


FIGURE C-7: 2031 NO ACTION ALTERNATIVE DNL CONTOURS

JAX Replacement Concourse B EA

[This page intentionally left blank.]

FIGURE C-8: 2031 PROPOSED ACTION DNL CONTOURS

[This page intentionally left blank.]

ATTACHMENT 1: JAA JAX CONCOURSE B EA AVIATION NO ACTION AND PROPOSED PROJECT TOTAL AIRCRAFT OPERATIONS FOR AIRCRAFT NOISE ANALYSIS METHODOLOGY This aircraft noise techinical report attachment describes the methodology used to develop the 2026 and 2031 No Action and Proposed Project total aircraft operations used in the noise analysis for the Jacksonville International Airport (JAX) Concourse B Environmental Assessment (EA). The methodology was developed through a collaborative planning effort between the Federal Administration (FAA), Orlando Airport Districts Office (ADO), the Jacksonville Aviation Authority (JAA), and RS&H, Inc.

Background

RS&H provided the FAA with an initial methodology that the FAA did not approve during a conference call held on January 31, 2023, between the JAA, RS&H, and FAA. The FAA stated that a special purpose forecast could be submitted to the FAA or that the FAA Terminal Area Forecast (TAF) could be used for the future No Action condition. Due to the time sensitivity of the project, the JAA and RS&H agreed to use the FAA TAF. The TAF contains historical and forecast data for enplanements and airport operations. It is a demand-driven forecast for aviation services based on local and national economic conditions.⁴ To calculate the future Proposed Project aircraft passenger operations, the FAA informed the JAA and RS&H that a simple turns per gate method could estimate the additional passenger operations that the six (6) new Concourse B gates would generate beyond the TAF. Also, the TAF should be seen as a baseline, and the six (6) new Concourse B gates would induce additional demand. However, following FAA guidance on numerous other projects involving additional gates at an airport, JAA and RS&H aviation planners concurred that the additional six (6) new Concourse B gates under the Proposed Project would meet the FAA-approved forecast demand of aircraft operations and would not induce additional demand (see JAA JAX Concourse B EA's Purpose and Need).

Therefore, this attachment provides the FAA-suggested methodology (i.e., turns per gate analysis) as the preferred approach for JAA and RS&H to develop the Proposed Project's future aircraft noise analysis. Per FAA's direction received on a conference call on January 31, 2023, JAA and RS&H agreed to add passenger aircraft operations beyond the aircraft operation levels of the FAA's TAF. However, it should be noted that there are no supporting JAX data or planning studies reflecting that there will be additional aircraft passenger operations beyond what is already described in the JAX Master Plan Update or forecasted in the TAF. Therefore, RS&H developed a conservative, linear approach representing the highest possible delta between the future Proposed Project and No Action passenger aircraft operations to model the potential change in aircraft noise. The Proposed Project's additional passenger aircraft operations are for the sole use in future aircraft noise modeling and do not have any other purpose in the JAA JAX Concourse B EA.

This attachment, its descriptions, calculations, and results are exclusively for use in aviation noise modeling purposes of the future No Action and Proposed Project (2026 and 2031). While the descriptions below describe how the No Action and Proposed Project aircraft operations were calculated, these numbers are only for JAX Concourse B EA aircraft noise analysis purposes and do not constitute an aviation forecast.

⁴ FAA. (2023). Forecast Process, 2022 TAF. Retrieved December 2023 from <u>https://www.faa.gov/sites/faa.gov/files/Forecast%20Process%20for%202022%20TAF.pdf</u>

2026 and 2031 Turns Per Gate Analysis

The 2026 and 2031 No Action aircraft annual operations are based on the most recent FAA TAF (February 2023) shown in *Table 1*.

TAF Year	Air Carrier	Air Taxi and Commuter	General Aviation	Military	Total Operations
2026	73,440	10,803	16,234	8,600	109,077
2031	82,415	11,386	16,400	8,600	118,801

Table 1: Terminal Area Forecast for 2026 and 2031

Source: FAA TAF, 2023. RS&H, 2023.

Notes:

"Air Carrier" operations include passenger aircraft operations performed with aircraft with more than 60 seats or a maximum payload capacity of more than 18,000 pounds, carrying passengers or cargo for compensation. "Air Taxi and Commuter" operations include aircraft operations performed by aircraft with 60 seats or less or a maximum payload capacity of 18,000 pounds or less, carrying passengers or cargo for compensation. "General Aviation" and "Military" aircraft operations include all local and itinerant aircraft operations.

The 2026 passenger aircraft operations equal "Air Carrier" plus "Air Taxi and Commuter" aircraft operations minus air cargo aircraft operations (i.e., 2026 TAF Air Carrier Aircraft Operations + 2026 TAF Air Taxi & Commuter Aircraft Operations – Air Cargo Aircraft Operations = 2026 No Action Annual Passenger Aircraft Operations). This calculation was repeated for 2031 No Action Annual Passenger Aircraft Operations. Using this approach, the 2026 and 2031 No Action Passenger Aircraft Operations are 79,903 and 89,194, respectively (see **Table 2**).

Air cargo operations were determined using JAA's Virtower[™] Airport Operations Tracking System, which totaled 4,138 air cargo operations. Air cargo aircraft operations were calculated to increase by 1.2% per year, matching the average annual growth rate presented in the JAX Master Plan Update (i.e., Air Cargo Aircraft Operations). The 2026 and 2031 Air Cargo Operations are 4,340 and 4,607, respectively (see *Table 2*).

The total annual 2026 and 2031 No Action aircraft operations are 109,077 and 118,843, respectively (see *Table 2*).

Year	Passenger Aircraft Operations	Air Cargo Operations	General Aviation Operations	Military Operations	Total Aircraft Operations
2026	79,903	4,340	16,234	8,600	109,077
2031	89,194	4,607	16,442	8,600	118,843

Table 2: 2026 and 2031 No Action Total Annual Aircraft Operations

Source: FAA TAF, 2023; Virtower™, 2022; RS&H, 2023.

Notes: An aircraft operation is one takeoff and one landing. Therefore, annual passenger aircraft operations are divided by 2 to determine the number of turns.

The 2026 and 2031 No Action Annual Passenger Aircraft Operations were then broken down into daily turns per gate (e.g., 2026 No Action Annual Passenger Aircraft Operations (79,903) / 2 / 365 (annual days) / 20 (gates) = 5.47 turns per gate per day). This calculation was repeated for 2031. Therefore, as shown in *Table 3*, the 2026 and 2031 No Action are 5.47 and 6.11 turns per gate, respectively.

	No Action				
Year	Aircraft Passenger Operations ¹	Turns = 1 Takeoff + 1 Landing	Days per Year	No Action Aircraft Passenger Gates	Turns Per Gate
2026	79,903	2	365	20	5.47
2031	89,194	2	365	20	6.11

Table 3: 2026 and 2031 No Action Passenger Operations Turns per Gate

Note: ¹ The 2023 TAF was used for passenger aircraft operations (total air carrier and commuter operations). Cargo aircraft operations (4,340 in 2026 and 4,607 in 2031) were deducted from the total air carrier and commuter aircraft operations because cargo airlines do not use the Airport's passenger gates.

Numbers may not total due to rounding.

Source: FAA TAF, 2023; Virtower[™], 2022; RS&H, 2023.

No Action and Proposed Project Annual Aircraft Operations Methodology

The JAX Concourse B EA uses 2026 as a basis for analysis because 2026 is the projected opening year for the Proposed Project. The JAX Concourse B EA also includes a +5-year project study year (2031). For the 2026 and 2031 Proposed Project, a conservative methodology to calculate the passenger aircraft operations of the additional six (6) gates was conducted. This was accomplished using 2026 No Action Alternative turns per gate of 5.47 (see *Table 4*).

Table 4: 2026 No Action Passenger Aircraft Operations and Turns Per Gate

	No Action			
Year	Passenger Aircraft Operations	Turns Per Gate		
2026	79,903	5.47		

Source: FAA TAF, 2023; RS&H, 2023.

The 2026 and 2031 Proposed Project passenger aircraft operations analysis consisted of three steps. **Step 1**: To calculate the passenger aircraft operations, the 2026 No Action Alternative turns per gate (5.47 turns per gate) were multiplied against the 2026 Proposed Project's six (6) additional gates. The 2026 No Action Alternative's 5.47 turns per gate was used because it represents the highest throughput the existing 20 gates would experience without the Proposed Project.

Calculation: 5.47 turns per gate (2026 No Action Alternative) x 6 (2031 Proposed Project new gates) x 2 (a "turn" equals 1 takeoff and 1 landing) x 365 (calendar year) = 23,971 (Proposed Project additional passenger aircraft operations); or 5.47 x 6 x 2 x 365 = 23,971. Note: Numbers may not total due to rounding.

This results in an annual increase of 23,971 passenger aircraft operations for the six (6) additional gates. The 23,971 passenger operations were added to the 2031 No Action Alternative passenger aircraft operations (i.e., 89,194), resulting in 2031 Proposed Project 113,165 passenger aircraft operations (see *Table 5*).

Calculation: 23,971 additional passenger operations + 89,194 2031 No Action Alternative passenger operations = 113,165; 2031 Proposed Project passenger aircraft operations; or 23,971 + 89,194 = 113,165.

This results in the Airport's 2031 Proposed Project of 26 total gates having 6.0 turns per gate (see *Table 5*).

	No Action		Proposed Project			
Year	Passenger Aircraft Operations	Turns Per Gate	Turns Per Gate (6 Additional Gates)	Additional Passenger Aircraft Operations	Total Passenger Aircraft Operations	Turns Per Gate (26 Total Gates)
2031	89,194	6.11	5.47	23,971	113,165	6.0

Table 5: 2031 No Action and Proposed Project Turns Per Gate

Source: FAA TAF, 2023; RS&H, 2023.

Step 2: This step calculates the average annual growth rate of the adjusted passenger aircraft operations from the 2022 total passenger aircraft operations (71,432) to the 2031 Proposed Project (113,165) total passenger aircraft operations. The adjusted passenger aircraft operations' average annual growth rate between 2022 and 2031 is 5.25% (see *Table 6*).

Table 6: Passenger Annual Aircraft Operations Growth Rate Comparisons

Year	Passenger Aircraft Operations	Adjusted Passenger Aircraft Operations ¹
2022	71,432	71,432
2031	89,194	113,165
Average Annual Growth Rate		
2022-2031	2.50%	5.25%

Note:

¹ Adjusted passenger aircraft operations represent the additional passenger aircraft operations added in 2031 under the Proposed Project. The 2022 passenger aircraft operations (71,432) are carried into this column for reference and to calculate the average annual growth rate comparison between 2022 and 2031 passenger aircraft operations under the No Action and adjusted under the Proposed Project.

The calculated average annual growth rate is 5.25%.

Numbers may not total due to rounding.

Source: FAA TAF, 2023. RS&H, 2023.

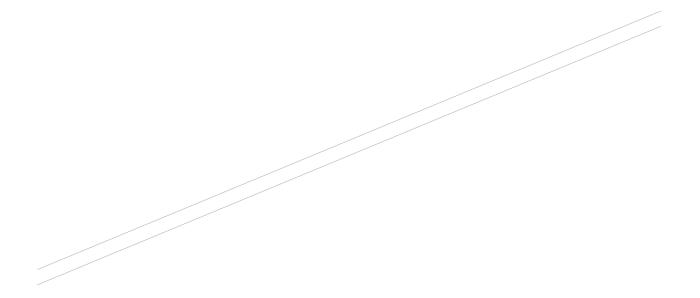
Step 3: The 2022 passenger aircraft operations (71,432) were extrapolated with a 5.25% average annual growth rate and calculated through 2031. This resulted in the 2026 Proposed Project's 87,640 passenger aircraft operations and the 2031 Proposed Project's 113,165 passenger aircraft operations (see *Table 7*).

Year	Passenger Aircraft Operations Extrapolated at 5.25%
2022	71,432
2023	75,179
2024	79,122
2025	83,272
2026	87,640
2027	92,237
2028	97,075
2029	102,166
2030	107,525
2031	113,165

 Table 7: Average Annual Growth of Passenger Aircraft Operations

Note: Calculated average annual growth rate is 5.25%.

Numbers are rounded to the nearest whole number.


Source: FAA TAF, 2023. RS&H, 2023.

The 2026 and 2031 No Action Alternative and Proposed Project total passenger aircraft operations and resulting total annual aircraft operations for aviation noise modeling purposes are shown in *Table 8*. The annual 2026 and 2031 No Action aircraft operations are 109,077 and 118,843, respectively. The Proposed Project includes 7,737 additional passenger operations in 2026 and 23,917 in 2031. The resulting 2026 and 2031 Proposed Project total annual aircraft operations are 116,814 and 142,814, respectively.

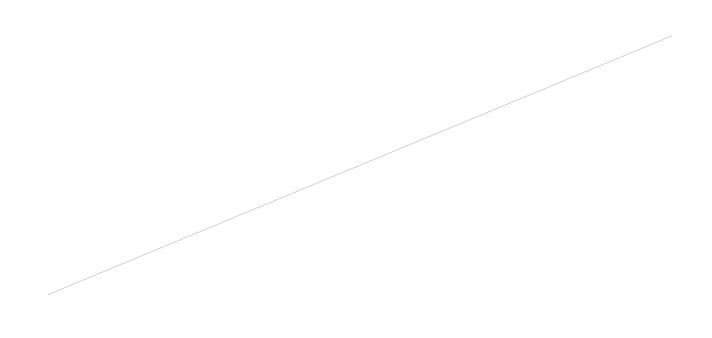

				No Action			Propose	d Project
Ye	ear	Passenger Aircraft Operations	Cargo Operations	General Aviation Operations	Military Operations	Total Operations	Additional Passenger Operations	Total Aircraft Operations
20	26	79,903	4,340	16,234	8,600	109,077	7,737	116,814
20)31	89,194	4,607	16,442	8,600	118,843	23,971	142,814

Table 8: No Action and Proposed Project Annual Aircraft Operations for Aircraft Noise Modeling

Source: FAA TAF, 2023; Virtower[™], 2022; RS&H, 2023.

APPENDIX D FAA ASR-9 AND RTR REPORTS

Federal Aviation Administration

Memorandum

Date:	November 15, 2023
То:	Mark D. VanLoh CEO, Jacksonville Aviation Authority 14201 Pecan Park Road Jacksonville, FL 32218
From:	Donna Alexander Manager, Surveillance/Weather/Terminal Engineering Center, Atlanta, GA 1701 Columbia Avenue College Park, GA
Subject:	Summary and Analysis for AJW-FN-ESA-23-SO-005788

Scope:

The Jacksonville Aviation Authority (JAA) is developing a terminal, ramp, and taxiway expansion at Jacksonville International Airport (JAX). This construction may have adverse impacts on FAA services due to the potential for interference caused by the new construction on existing FAA equipment. The purpose of this analysis is to evaluate the performance of JAX ASR-9/Mode S system equipment with respect to this new construction plan and to determine a mitigation strategy for continued FAA services. As part of the executed reimbursable agreement AJW-FN-ESA-23-SO-005788, the FAA will perform radar analysis and provide a detailed report of the evaluations and recommendations to enable continued service within the context of the sponsor proposal to construct a bypass taxiway, ramp expansion, and concourse addition.

Executive Summary:

Considering the Terminal B Expansion structure, false target analysis, and subsequent discussions with the FAA radar community concluded the ASR-9/Mode S system will be able to mitigate any operational effects caused by the construction of the building at its present location, design, and orientation. Labor and travel costs will be requested to support up to three (3) site visits to Jacksonville during and/or after construction to perform optimization as

needed of the ASR-9/WSP and Mode S systems. Optimization will be performed by FAA technical operations personnel.

Regarding the Bypass Taxiway "W" and increased apron parking, analysis and subsequent discussions with the FAA radar community did not provide a clear consensus on how well the ASR-9/Mode S systems would react to aircraft passing close to the radar or parked in front of the new Terminal B Expansion structure. Empirical data suggests that aircraft parked, or stationary, within 500 feet of the radar generates false target zones that optimization or post-processing was not able to filter out. Based on the empirical data and subsequent analysis contained in Appendix B, the FAA recommends that a design reimbursable agreement be established with the airport to raise the existing tower by 20 feet. In the interim, a 'no loitering' zone will be established to prevent aircraft from slowing or stopping while on the new taxiway. Additionally, aircraft parking lines closest to the radar should be redrawn so that their tails are lined up with radials originating from the antenna's center of rotation where possible.

If you have any questions on this subject, please contact Michael Armstrong in the Terminal/Surveillance/Weather Engineering Center at 404-305-7239.

Initial Conditions:

- The JAX ASR-9/Mode S Facility is equipped with the Weather Systems Processor (WSP) which is why it was removed from the FAA's radar divestiture list. The WSP is JAX's only source of wind shear information critical to air traffic operations. This means the radar will need to remain in service at JAX as their primary surveillance sensor.
- In addition to the JAX ASR-9/Mode S, the Standard Terminal Automation Replacement System (STARS) at JAX also receives sensor input from Jacksonville NAS (Towers Field) ASR-11/ATCBI-6, Whitehouse Naval Outlying Field (NEN) ARSR-4/ATCBI-5, Gainesville (GNV) ASR-9/Mode S, Daytona Beach (DAB) ASR-9/Mode S, Cross City (CTY) ARSR-4/ATCBI-6, and Surveillance and Broadcast Services (SBS).
- 3. The software tools used to develop this analysis consist of the Radar Support System (RSS) version 7.66, Rhinoceros 7 (a 3D modeling tool), and Lucernhammer suite (a radar cross-section generator/viewer, consisting of lucern_x64.exe, m3d_x64.exe, and emerald_x64.exe).

Terminal Building Expansion Analysis Setup:

The first six slides of Appendix A, pages 2 through 7, show the evolution from the AutoCAD file provided by the JAA to a stereolithic (*.stl) file format generated by Rhinoceros 7, then to a *.facet file generated by Lucernhammer. The *.facet file format is needed to generate the radar cross-sectional model required as an input into the FAA's RSS program. Figures 7 and 8, pages 8 and 9, were provided to show how the centroid was calculated. The Lucernhammer m3d_x64.exe application has a subroutine that centers the *.facet model and the centroid coordinates, elevation, and horizontal tilt are needed to place the model inside the RSS

program at its 'real world' location and orientation. Figure 9 on page 10 shows the azimuth calculations from the radar center of rotation coordinates to the left and right corners of the building. Figure 10 on page 11 provides the calculation sheet required to set up the files needed for Lucernhammer Radar Cross Section (RCS) analysis.

Figures 11 through 13 on pages 12 through 14 show the product of Lucernhammer's lucern_x64.exe application. The three RCS charts shown here provide the reflectivity or RCS of the different models shown in Figures 4 through 6. The x-axis of the charts is in spherical degree from the centroid of the model outward toward the "illuminator". The y-axis represents RCS units expressed in dB relative to one square meter (dbsm) as the illuminator sweeps the incident angle vertically toward the centroid of the model from 0 to 90 spherical degrees. In other words, each x-axis tick contains 90 spherical degrees of RCS units as the illuminator is panned vertically across the model.

Figure 14 shows that each RCS file (*.rcs) needs a corresponding context file (*.con) created which provides the RSS tool with the variables it needs to properly interpret the RCS files. False target analysis can begin once these files have been generated and properly loaded into the RSS file structure. Figures 15 through 20 show additional setup steps that were performed to set up the RSS program for analysis. Some of the steps were not needed but the slides were kept in the presentation for future training purposes.

Terminal Building Analysis Interpretation:

The analysis starts with Figures 21 through 30 which show the RSS range azimuth false target plots without the Terminal B Expansion Building model. In other words, these figures represent the current false target environment. To explain these diagrams, every reflective surface surrounding the radar site has the potential for generating false targets. These zones appear when a structure meets very specific requirements. Zones are displayed in three different types: red zones represent areas where true aircraft if present could generate the false targets shown in the false target plot, green zones are where the false targets generated by true targets crossing through the red zones might appear, and blue zones are a combination of both types of zones. Charts are further defined by altitude ranges since the false target environment surrounding a radar changes with respect to the altitude of true targets in relation to the reflectors. In short, these figures were provided to show a baseline of the current false target environment prior to including the Terminal B Expansion building.

Figures 31 through 60 show the false target plots with ONLY the Terminal B Expansion Building model being analyzed. One expectation going into this project was that the building design might need to be modified so that the surfaces facing the radar become less reflective or at least reoriented so that the beacon signal is dispersed or absorbed. What was discovered however is that changing the orientation/tilt of the windows did not provide the level of improvement that was expected. For example, comparing Figure 33 (no tilt) with Figure 43 (10° tilt) shows that tilting the windows spreads the area of affect from 10 nautical miles to 25.

Bypass Taxiway "W" Analysis Setup:

Figure 61 on page 64 includes a clip of a drawing that was provided by the JAA showing the Bypass Taxiway "W" coordinates and taxiway surface elevations. The figure was also updated after analysis with the "no loitering zone" that will be used by local JAX air traffic control as a guide after taxiway construction. Figures 62 through 64 show Google Earth representations of the tail surface zones illuminated by the Mode S beacon antenna, one for each aircraft type included in the taxiway's category classification. Figures 65 through 69 show the set-up process for generating files needed for Lucernhammer RCS analysis. These figures were generated using the Boeing 767 400ER tail only since it represents the worst-case scenario of aircraft that might use this new taxiway.

Bypass Taxiway "W" Analysis Interpretation:

Figures 70 through 111 show the RSS false target plots including the tail section of a 767 400ER as a moving reflective surface along Bypass Taxiway "W". What these diagrams show is that the tail surfaces provide the potential for false target generation as it moves along the taxiway. However, both the RSS software team and FAA ASR-9 and Mode S system experts raised a concern that the software may not be processing reflectors this close to the radar facility properly and may not be providing a real-world picture of system performance.

A recent case mentioned during those discussions occurred at the Los Angeles International Airport (LAX) LAXS ASR-9/Mode S/WSP system. The LAXS ground elevation is approximately 117 feet MSL and operates with a 37-foot tower placing its focal point at 170.9 feet MSL. When a McDonald Douglas MD-11 aircraft parked about 500 feet from the radar site, false targets were generated from the aircraft tail section on approach from the west of the airport in a region about 20 nautical miles to the east of the airport. The MD-11 tail is only slightly taller than the 767 400ER at 57 feet-9 inches above ground level which places its maximum tail height at 178 feet MSL. The tail of the aircraft in this case is higher in elevation than the focal point of the radar placing the centroid of the tail at basically the same height. Obviously, this case is an extreme one but was mentioned by FAA radar experts as a reason to be cautious when considering aircraft parked or moving so close in front of a radar facility like JAX.

A determination was made because of these discussions to request funds to raise the tower by at least 20 feet at Jacksonville to provide more vertical separation between the antenna focal point and the tail surfaces of aircraft moving along the new taxiway. Figure 112 shows the false target plot using the tail section at station 313 (the closest point to the antenna) and raising the tower height to 57 feet (adding 10 feet to the height). Figure 113 shows the false target plot after adding 20 feet to the tower height. Analysis shows that adding 20 feet to the height eliminates all false target zones from the tail section closest to the radar. Finally, Figure 114 shows the predicted benefit to the false target zones generated by the Terminal Expansion B building. The range of the zones decreases from about 37 nautical miles to about 20 nautical miles by raising the tower.

Attachments:

Appendix A – Terminal Building B Expansion Analysis Appendix B – Bypass Taxiway "W" Analysis

Appendix A Terminal B Expansion Building Analysis

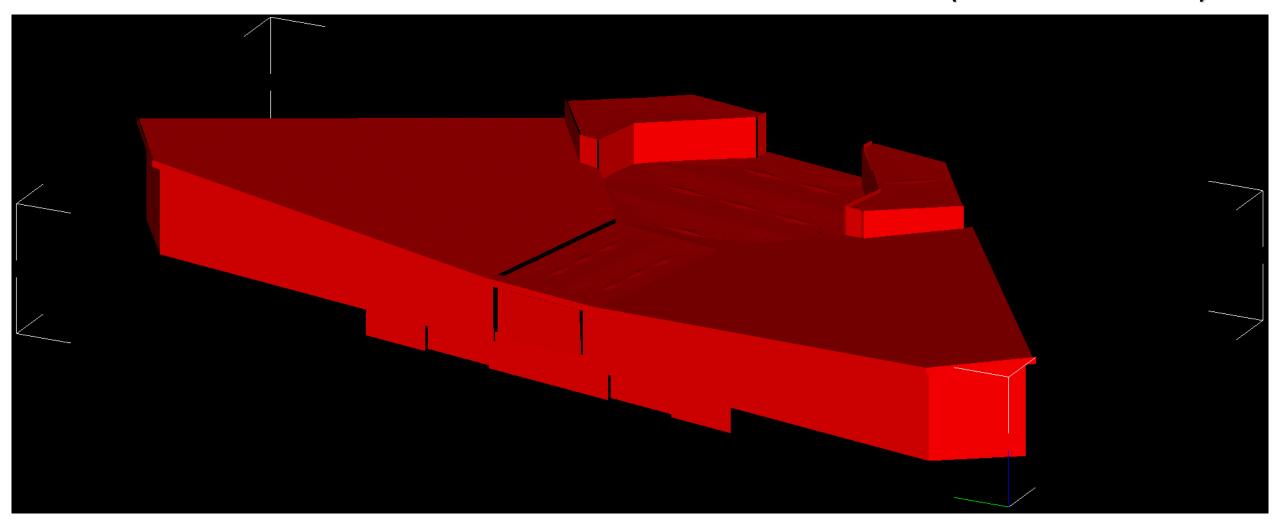
AK-CONC_sh_c.3dm (307 KB) - Rhino 7 Evaluation (29 Days Remaining) - [Perspective]

Elle Edit View Garve Surface SubD Sglid Mesh Olmension Stansform Tools Analyze Bender Banels Help

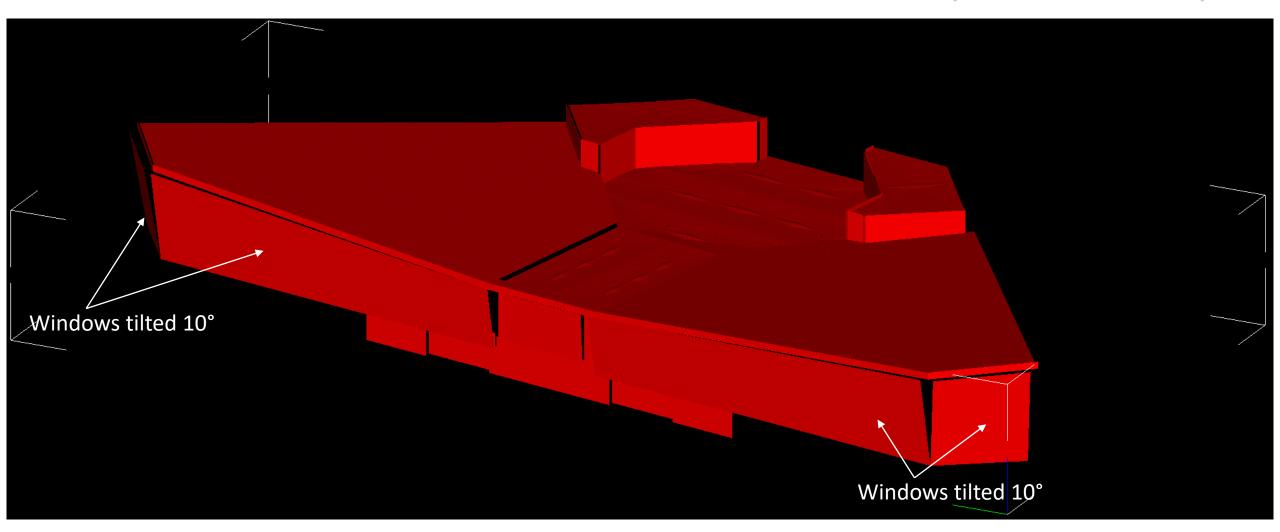
🛃 1AX-CONC.sh.;25.3dm (112 KB) - Rhino 7 (valuation (29 Days Remaining) - (Perspective) File Edit View Ourse Surface SubD Solid Mesh Dimension Transform Tools Analyze Render Panels Help 1 open mesh added to selection Command: Standard CPlanes Set View Display Select Viewport Layout, Visibility Transform Conve Tools Surface Tools Solid Tools SubD Tools Mesh Tools Render Tools Display New in V7 ~ 정 형 형 등 🖉 🖓 🔾 🔾 🗣 🐼 🖉 🖓 🗬 📲 000 0 All Windows @ 10° Tilt 4 10 + ð, 聖記器◎風 二田書迎く 0.00 FIGURE 2

30 IAX-CONC.shur25.3dm (112 K0) - Rhino 7 Evaluation (29 Days Remaining) - [Perspective]

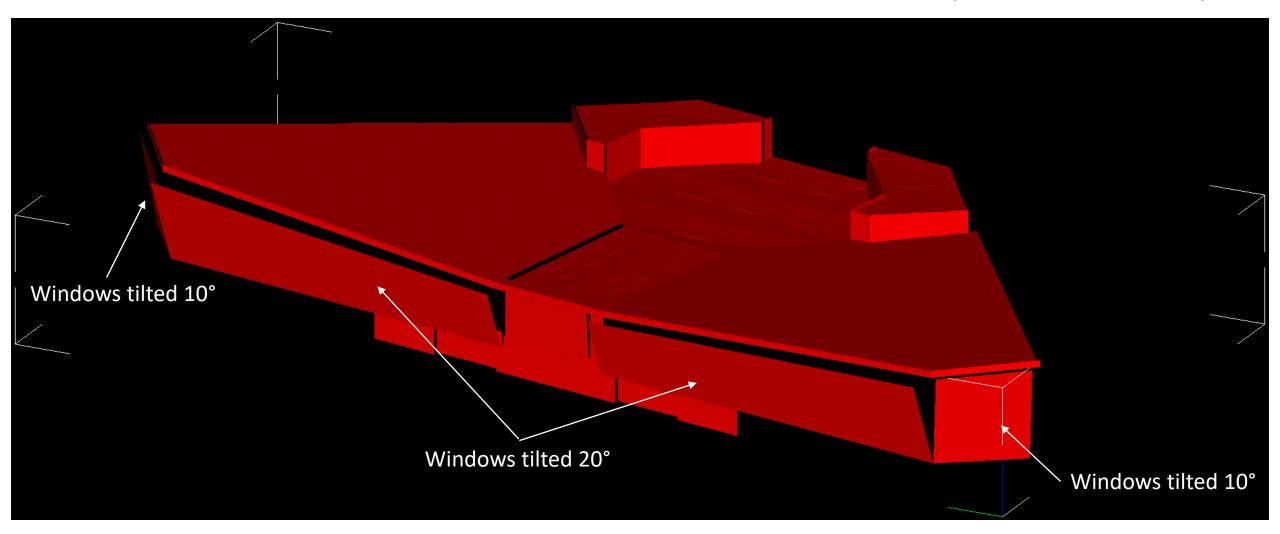
File Edit View Ourse Surface SubD Solid Mesh Dimension Transform Tools Analyze Render Panels Help

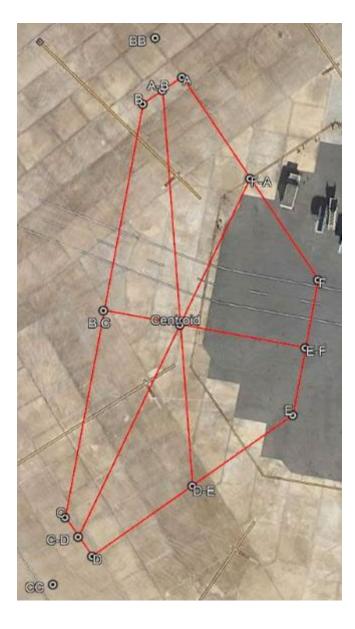

1 open mesh added to selectic Command:

Standard CPlanes Set View Disolary Select Viewport Layout, Visibility Transform Curve Tools Surface Tools Solid Tools SubD Tools Mesh Tools Render Tools Dialting New in V7


Front Windows @ 20° Tilt Side Windows @ 10° Tilt

Verspective Pop Finit Sign: C Version Verse: Pop Finit Z Mid Can Vert Z Nep Verse Verse: Project Dasble Picrae s y z Inches ■0 Grid Snap Onthe Renar Ownap Smarthack Gumbal Record History Fiber CPJ use: 0.0 %


Original Model *.facet (Emerald Viewer)



10° Tilt Model *.facet (Emerald Viewer)

20°/10° Model *.facet (Emerald Viewer)

DETERMINE DISTANCE BETWEEN POINTS IN METERS (POINTS DERIVED FROM MODEL)

***********Ellipsoid : GRS80 / WGS84 (NAD83)

Forward azimuth FAZ = 10 12 26.5912 From North

Back azimuth BAZ = 190 12 26.6978 From North

*************Ellipsoid : GRS80 / WGS84 (NAD83)

Forward azimuth FAZ = 326 46 1.6389 From North

Back azimuth BAZ = 146 46 1.0554 From North

Ellipsoidal distance S = 55.9602 m

Ellipsoidal distance S = 31.6028 m

Equatorial axis, a = 6378137.0000

Inverse flattening, 1/f = 298.25722210088

Polar axis, b = 6356752.3141

LAT = 30 29 32.05000 North

LON = 81 41 16.65000 West

LAT = 30 29 33.57000 North

LON = 81 41 17.80000 West

Equatorial axis, a = 6378137.0000

Inverse flattening, 1/f = 298.25722210088

Polar axis, b = 6356752.3141

LAT = 30 29 31.04000 North

LON = 81 41 16.86000 West

LAT = 30 29 32.05000 North

LON = 81 41 16.65000 West

First Station : E

Second Station : F

First Station : F

Second Station : A

Ellipsoid : GRS80 / WGS84 (NAD83)
 Equatorial axis, a = G378137.0000
 Polar axis, b = G356752.3141
 Inverse flattening, 1/f = 298.25722210088
 First Station : A

LAT = 30.29.33.57000 North
 LON = 81 41.780000 West

Second Station : B ------LAT = 30 29 33.37000 North

LON = 81 41 18.14000 West

Forward azimuth FAZ = 235 48 49.3198 From North Back azimuth BAZ = 55 48 49.1473 From North Ellipsoidal distance S = 10.9612 m

Ellipsoid : GRS80 / WGS84 (NAD83) Equatorial axis, a = 6378137.0000 Polar axis, b = 6356752.3141 Inverse flattening, 1/f = 298.25722210088

First Station : B ------LAT = 30 29 33.37000 North LON = 81 41 18.14000 West

Second Station : C ------LAT = 30 29 30.28000 North LON = 81 41 18.80000 West

 Forward azimuth
 FAZ = 190 28 47.1965 From North

 Back azimuth
 BAZ = 10 28 46.8616 From North

 Ellipsoidal distance
 S = 96.7697 m

*********Ellipsoid : GRS80 / WGS84 (NAD83) Equatorial axis, a = 6378137.0000 Polar axis, b = 6356752.3141 Inverse flattening, 1/f = 298.25722210088

First Station : C LAT = 30 29 30.28000 North LON = 81 41 18.80000 West

Second Station : D ------LAT = 30 29 29.99000 North LON = 81 41 18.57000 West

 Forward azimuth
 FAZ = 145 31 1.8187 From North

 Back azimuth
 BAZ = 325 31 1.9354 From North

 Ellipsoidal distance
 S = 10.8340 m

••••••••Ellipsoid : GRS80 / WGS84 (NAD83) Equatorial axis, a = 6378137.0000 Polar axis, b = 6356752.3141 Inverse flattening, 1/f = 298.25722210088

First Station : D ------LAT = 30 29 29.99000 North

LON = 81 41 18.57000 West Second Station : E

LAT = 30 29 31.04000 North LON = 81 41 16.86000 West

 Forward azimuth
 FAZ = 54 39 42.7087 From North

 Back azimuth
 BAZ = 234 39 43.5763 From North

 Ellipsoidal distance
 S = 55.9033 m

DETERMINE COORDINATES FOR MIDPOINT

Ellipsoid : GRS80 / WGS84 (NAD83) Equatorial axis, a = 6378137.0000 Polar axis, b = 6356752.3141 Inverse flattening, 1/f = 298.25722210088

First Station : A

LAT = 30 29 33.57000 North LON = 81 41 17.80000 West

Second Station : A-B Center Point

LAT = 30 29 33.47000 North LON = 81 41 17.97000 West

 Forward azimuth
 FAZ = 235 48 49.3198 From North

 Back azimuth
 BAZ = 55 48 49.2335 From North

 Ellipsoidal distance
 S = 5.4806 m

Ellipsoid : GRS80 / WGS84 (NAD83) Equatorial axis, a = 6378137.0000 Polar axis, b = 6356752.3141 Inverse flattening, 1/f = 298.25722210088

First Station : B ------LAT = 30 29 33.37000 North LON = 81 41 18.14000 West

Second Station : B-C Center Point

LAT = 30 29 31.82500 North LON = 81 41 18.47000 West

 Forward azimuth
 FAZ = 190 28 47.1965 From North

 Back azimuth
 BAZ = 10 28 47.0290 From North

 Ellipsoidal distance
 S = 48.3849 m

Ellipsoid : GRS80 / WGS84 (NAD83) Equatorial axis, a = 6378137.0000 Polar axis, b = 6356752.3141 Inverse flattening, 1/f = 298.25722210088

First Station : C

LAT = 30 29 30.28000 North

Second Station : C-D Center Point

LAT = 30 29 30.13500 North LON = 81 41 18.68500 West

 Forward azimuth
 FAZ = 145 31 1.8187 From North

 Back azimuth
 BAZ = 325 31 1.8771 From North

 Ellipsoidal distance
 S = 5.4170 m

Ellipsoid : GRS80 / WGS84 (NAD83) Equatorial axis, a = 6378137.0000 Polar axis, b = 6356752.3141 Inverse flattening, 1/f = 298.25722210088

First Station : D

LAT = 30 29 29.99000 North LON = 81 41 18.57000 West

Second Station : D-E Center Point

LAT = 30 29 30.51500 North LON = 81 41 17.71500 West

 Forward azimuth
 FAZ = 54 39 42.7087 From North

 Back azimuth
 BAZ = 234 39 43.1425 From North

 Ellipsoidal distance
 S = 27.9517 m

Ellipsoid : GRS80 / WGS84 (NAD83) Equatorial axis, a = 6378137.0000 Polar axis, b = 6356752.3141 Inverse flattening, 1/f = 298.25722210088

First Station : E

LAT = 30 29 31.04000 North LON = 81 41 16.86000 West

Second Station : E-F Center Point

LAT = 30 29 31.54500 North LON = 81 41 16.75500 West

 Forward azimuth
 FAZ = 10 12 26.5912 From North

 Back azimuth
 BAZ = 190 12 26.6445 From North

 Ellipsoidal distance
 S = 15.8014 m

Ellipsoid : GRS80 / WGS84 (NAD83) Equatorial axis, a = 6378137.0000 Polar axis, b = 6356752.3141 Inverse flattening, 1/f = 298.25722210088

First Station : F ------LAT = 30 29 32.05000 North LON = 81 41 16.65000 West

Second Station : F-A Center Point

LAT = 30 29 32.81000 North LON = 81 41 17.22500 West

 Forward azimuth
 FAZ = 326 46
 1.6389 From North

 Back azimuth
 BAZ = 146 46
 1.3471 From North

 Ellipsoidal distance
 S =
 27.9801 m

LAT = 30 29 31.71			RIGHT CHOICE?
LON = 81 41 17.78	3298 We	est	
orward azimuth	FAZ =	100 38 45.488	9 From North
Back azimuth	BAZ = 2	80 38 45.8375	From North
llipsoidal distance	S =	18.6428 m	

First Station : BC	
FIrst Station : BC	NOTE: CENTROID BY MIDPOINT LINE
	CROSSING IS IDENTIFIED BY 'CENTROID'
LAT = 50 29 51.65000 NOT UT	WHEREAS CENTROID BY TRAPEZOID
LON = 81 41 18.47000 West	CALCULATIONS IDENTIFIED BY 'CENT-
	CALC'. DIFFERENCE BETWEEN TWO
Second Station : CENT_CALC	POINTS IS 3.34 FT. DETERMINED TO USE
	MIDPOINT LINE CROSSING AS CENTROID.
LAT = 30 29 31.71816 North	RIGHT CHOICE?
ION = 81 /11 17 78298 West	

Ellipsoid : GRS80 / WGS84 (NAD83) Equatorial axis, a = 6378137.0000 Polar axis, b = 6356752.3141 Inverse flattening, 1/f = 298.25722210088

y' = h (b + 2a) / 3 * (b + a) = 46.6732 (127.7665 + 2 (31.6028)) / 3 * (127.7665 + 31.6028) = 8913.279 / 478.1079 = 18.6428 m

y' = Centroid Height in meters from Base (BB-CC) to Top (E-F) a = Length of Top in meters (E-F) = 31.6028 m b = Length of Base in meters (BB-CC) = 127.7665 m h = Height of Trapezoid in meters (B-C--E-F) = 46.6732 m

Centroid of Trapazoid Calcs

Forward azimuth FAZ = 190 27 45.5971 From North Back azimuth BAZ = 10 27 45.1557 From North Ellipsoidal distance S = 127.7665 m

LAT = 30 29 29.78000 North LON = 81 41 18.90000 West

Second Station : CC

LAT = 30 29 33.86000 North LON = 81 41 18.03000 West

First Station : BB

Ellipsoid : GRS80 / WGS84 (NAD83) Equatorial axis, a = 6378137.0000 Polar axis, b = 6356752.3141 Inverse flattening, 1/f = 298.25722210088

DETERMINE LENGTH OF TRAPEZOID BASE IN METERS

Forward azimuth FAZ = 100 38 45.4889 From North Back azimuth BAZ = 280 38 46.3616 From North Ellipsoidal distance S = 46.6732 m

LAT = 30 29 31.55000 North LON = 81 41 16.75000 West

Second Station : E-F

LAT = 30 29 31.83000 North LON = 81 41 18.47000 West

First Station : B-C

Ellipsoid : GRS80 / WGS84 (NAD83) Equatorial axis, a = 6378137.0000 Polar axis, b = 6356752.3141 Inverse flattening, 1/f = 298.25722210088

DETERMINE HEIGHT OF TRAPEZOID IN METERS

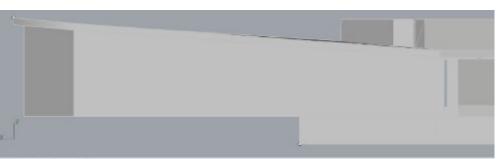
DETERMINE CENTROID OF TRAPEZOID BY CALCULATION

Line	Path	Polygon	Circle	30 t	ath	30 poly	1.1
fees.re	the date	nce between t	we paints a	in the g	nound	F	
	Map Len	gifte:		234	Feet		
On	ound Len	aths .		3.34			
	Head			90.90	degre		
-	Note Nevie		1.00			Deer	

Clarit-Claric

Confesti O

THEREFORE. Height Centroid MSL of the Terminal Building is 28.83 + 1/2*45.77025 = 51.715 Feet MSL


This equates to 45.77025 Feet This also equates to 13.9508 meters Ground elevation at Centroid per 2019 LIDAR is 28.83 Feet MSL

Per drawing, terminal measures 549.243 inches from its base to its highest point (578.193"-28.95")

DETERMINE HEIGHT OF CENTROID

t ⊠Near ⊠Point ⊠Mid L Cen ⊠int ⊠Perp ⊠Tan ⊠Quad ⊠Knot ⊠Vertex □Project □ Disable x-2240466-380 y 28.950 z -439497.336 Indies D Grid Snap Ortho Hanar Osnap Smarthadi Gumball Record History Fiher

Left Top Front Right 12

I Vertex Point V Mid Cen V int VPerp V Ian VQuad VKnot VVertex Project Disable x 2237358.348 y 578.199 z 439156.191 Inches 0

Grid Snop Ortho Planar Osnap SmartTrack Gumball Record History Filter

DETERMINE AZIMUTH BEACON ANTENNA CL TO LEFT CORNER OF TERMINAL

Ellipsoid : GRS80 / WGS84 (NAD83) Equatorial axis, a = 6378137.0000 Polar axis, b = 6356752.3141 Inverse flattening, 1/f = 298.25722210088

First Station : CL Ant Rot, Point R

LAT = 30 29 35.97330 North LON = 81 41 33.61022 West

Second Station : A

LAT = 30 29 33.57000 North LON = 81 41 17.80000 West

 Forward azimuth
 FAZ = 99 57 16.4693 From North (99.954°T)

 Back azimuth
 BAZ = 279 57 24.4919 From North

 Ellipsoidal distance
 S = 428.0775 m

DETERMINE AZIMUTH BEACON ANTENNA CL TO RIGHT CORNER OF TERMINAL

Ellipsoid : GRS80 / WGS84 (NAD83) Equatorial axis, a = 6378137.0000 Polar axis, b = 6356752.3141 Inverse flattening, 1/f = 298.25722210088

First Station : CL Ant Rot, Point R

LAT = 30 29 35.97330 North LON = 81 41 33.61022 West

Second Station : D

LAT = 30 29 29.99000 North LON = 81 41 18.57000 West

 Forward azimuth
 FAZ = 114 40 18.0491 From North (114.671°T)

 Back azimuth
 BAZ = 294 40 25.6809 From North

 Ellipsoidal distance
 S = 441.3952 m

DETERMINE RANGE & AZIMUTH FROM BEACON ANTENNA CENTER OF ROTATION TO CENTROID	 *.lh file edits # Uniformly spaced angle specification. Note: All angles should be in degrees.
Ellipsoid : GRS80 / WGS84 (NAD83)	# Incident elevation/theta : start end step

0

359.28

335.329

350.046

0.72

Equatorial axis, a = 6378137.0000 Polar axis, b = 6356752.3141 Inverse flattening, 1/f = 298.25722210088

First Station : Centroid

LAT = 30 29 31.72000 North LON = 81 41 17.82000 West

Second Station : CL ANT ROT, POINT R

LAT = 30 29 35.97330 North LON = 81 41 33.61022 West

Forward azimuth FAZ = 287 16 44.1483 From North (287.27893°T)

 Back azimuth
 BAZ = 107 16 36.1359 From North

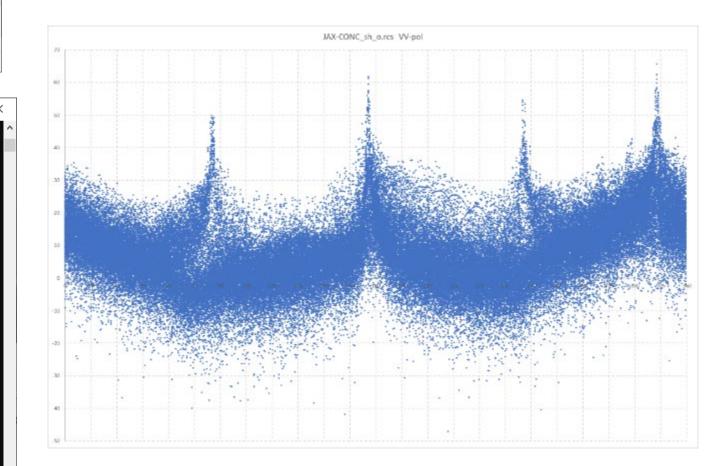
 Ellipsoidal distance
 S =
 440.9988 m (1446.843563 US feet)

*JAX-CONC_sh_c	.con - Notepad	_		\times
<u>F</u> ile <u>E</u> dit F <u>o</u> rmat	<u>V</u> iew <u>H</u> elp			
0 30.49332592 -81.69266951 28.1195 30.49214444 -81.68828333 15.762 22.74 0.36 90.0 0.36 0.0 359.28 0.72 335.329 350.046	<pre>#0 = no bistatic data, 1 = b #radar latitude #radar longitude #antenna height (MSL m) #building latitude #building longitude #building center height (MSL #building maximum height (MSL #building maximum height (MSL #start elevation below vertic #stop elevation below vertic #stop elevation below vertic #stop azimuth CCW from E #azimuth increment CCW from #azimuth start of building CCW #azimuth end of building CCW</pre>	.m) 5Lm) .cal :al vertical E CCW from E	ta	
550.040	Ln 10, Col 49 100% Unix (LF)		F-8	

*.lh file edits					
	ced angle specification. Note	e: All angles should be in d	egrees.		
#	**				
	tion/theta : start end step	0	Nata: 00 was added		d sin as stan is O
88.39482134	90 uth (ahi u atart and atar	0	Note: 90 was added	as end but not use	a since step is 0
	uth/phi : start end step 180	0	Nata: 100 was adda		ad ainea atan ia O
162.72107	180	0	Note: 180 was added	as end but not us	ed since step is o
Beacon Antenna C	oordinates (NAD83)	30°29'35.97330"	N 81°41'33.61022"W	30.49332592	-81.69266951
Centroid Coordina	tes (NAD83)	30°29'31.72"N	81°41'17.82"W	30.49214444	-81.68828333
Beacon Antenna F	ocal Point (Feet MSL)	E20 → 92	26	28.11947577 (meters)
(From Precision	Survey; CL Antenna Rotation	i, Point R)			
Ground Elevation	at Centroid (Feet MSL)	28	.83 From 2019 Lidar Dat	а	
Max. Height of Str	ucture (Feet)	45.77	025 / 0.5 =	22.885125	13.95009144 (mete
Max. Elevation of	Structure (Feet MSL)	74.60	025	22.73704663 (meters)
Centroid Elevation	(Feet MSL)	E25 → 51.715	125	15.76200091 (meters)
Calculated Range	Ant. to Centroid in Feet	E26 → 1446.843	563		
Calculated Elev An	gle Centroid to Ant. FP	1.605178	664=DEGREES(ATA	N((F20-F25)/	F26))
Spherical of Above	2	88.39482			
Calculated Azimut	n Ant. to Centroid in °T	287.27	893		
Spherical of Above		162.72	107		
L Corner of Hange	r (CW)	99.	954		
Spherical of Above	!	350.	046		
R Corner of Buildin	ng (CW)	114.	671		
Spherical of Above	2	335.3	329		
RSS Context File In	formation (*.con)				
0	#0 = no bi	static data, 1 = bistatic dat	а		
30.49332592	#radar lat	itude			
-81.69266951	#radar lor	•			
28.12		height (MSL m)			
30.49214444	#building				
-81.68828333	#building	-			
15.76		center height (MSL m)			
22.74	•	maximum height (MSL m)			
	#start elev	vation below vertical			
0.36					
0.36 90		ation below vertical			

#start azimuth CCW from E

#stop azimuth CCW from E

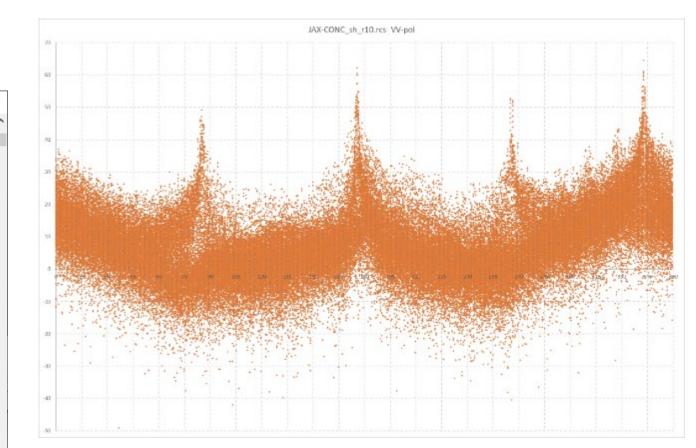

#azimuth increment CCW from E #azimuth start of building CCW from E

#azimuth end of building CCW from E

JAX-CONC_sh_o.lh - Notepad	_		×
<u>F</u> ile <u>E</u> dit F <u>o</u> rmat <u>V</u> iew <u>H</u> elp			
#			
# Incident elevation/theta : start end step			
88.39482134 90.00 0			
<pre># Incident azimuth/phi : start end step</pre>			
162.72107 180.00 0			
# Observation elevation/theta : start end step (disregarded if mo	onostat	ic)	
0.36 90 249			
# Observation azimuth/phi : start end step (disregarded if monos	tatic)		
0 359.28 499			
Ln 1, Col 1 100% Windows (CRLF)) UTF	-8	

Command Prompt \times C:\Lucernhammer\dlls>lucern x64.exe JAX-CONC sh o.lh -threads 7 -rcsfile -rcshead lucernhammer MT v. 2.00 (Win/x64), high frequency RCS analysis (c) 1998-2014 Tripoint Industries, Inc., All Rights Reserved. -> reading input file (JAX-CONC sh o.lh) ... -> reading ACAD facet file (JAX-CONC sh o.facet) ... --- Facet File Summary ---Good Facets File Big Parts Nodes Bad Facets Units 537 572 Inches -> combining coincident nodes in facet geometry (1) ... -> building edge geometry from facet geometry (1) ... -> found (314) edges, (0) interior edges, (314) knife edges. -> adding facet geometry (1) to Embree ray tracing scene ... --- Electromagnetics Summary ---Method Active To Disk PO yes no PTD yes no SBR no ILDC no -> setting up (7) work threads ... -> Bistatic PO contribution using ray tracer ... -> Bistatic PTD contribution using ray tracer ... -> calculation complete. -> writing ASCII RCS file (JAX-CONC_sh_o.rcs) ... --> writing ASCII field file (JAX-CONC_sh_o.field) ...

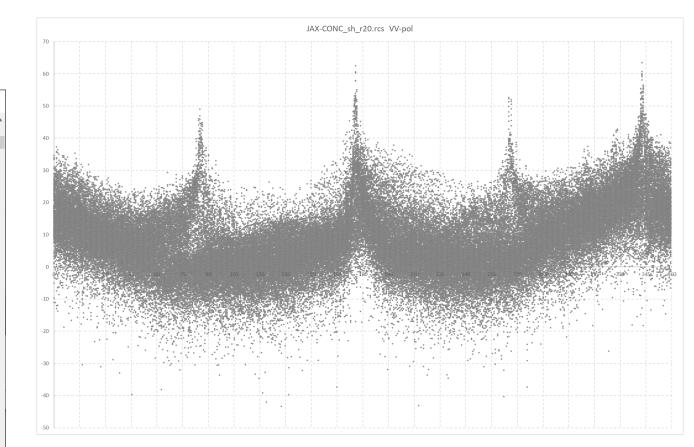
Original Model *.facet (Lucernhammer RCS)



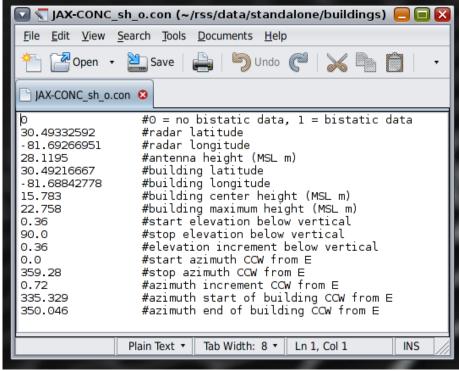
JAX-CONC_sh_r10.lh - Notepad				_		×
<u>F</u> ile <u>E</u> dit F <u>o</u> rmat <u>V</u> iew <u>H</u> elp						
#						
<pre># Incident elevation/theta :</pre>	start end step					
88.39482134 90.00 0						
# Incident azimuth/phi : star	t end step					
162.72107 180.00 0						- 1
# Observation elevation/theta	: start end step	(disre	garded if monos	tatio	=)	
0.36 90 249						
# Observation azimuth/phi : s	tart end step (dis	sregard	ed if monostati	lc)		
0 359.28 499						
	Ln 1, Col 1	100%	Windows (CRLF)	UTF-8	1	

	ompt						
\Lucernhamm	er\dlls>lucern	_x64.exe JAX-CO	NC_sh_r10.lh	-threads	7 -rcsfi	ile -rcs	head
		n/x64), high fr stries, Inc., A					
		-CONC_sh_r10.lh (JAX-CONC_sh_r					
	Facet File	Summary					
ile Big P	arts Nodes	Good Facets	Bad Facets	Units			
1	1 541	572	0	Inches			
-> found (31	.8) edges, (0)	interior edges,					
-> found (31 -> adding fa	.8) edges, (0)	interior edges, 1) to Embree ra	(318) knife				
-> found (31 -> adding fa	8) edges, (0) icet geometry (rromagnetics Su	interior edges, 1) to Embree ra mmary	(318) knife				
-> found (31 -> adding fa Elect	8) edges, (0) icet geometry (rromagnetics Su	interior edges, 1) to Embree ra mmary	(318) knife				

-> writing ASCII field file (JAX-CONC_sh_r10.field) ...

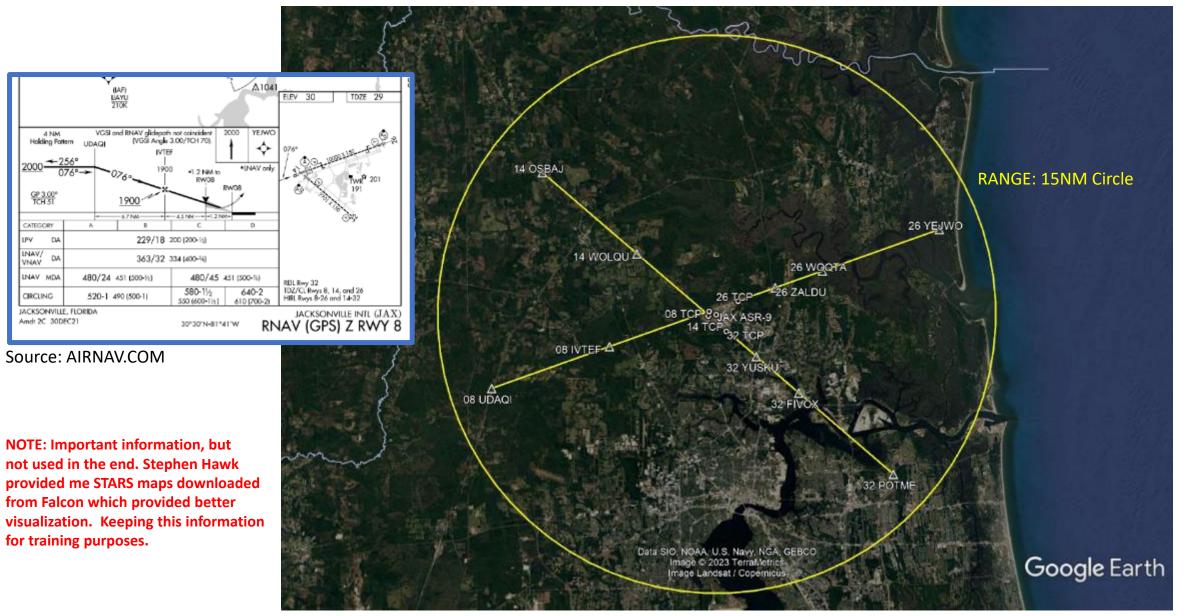

10° Tilt Model *.facet (Lucernhammer RCS)

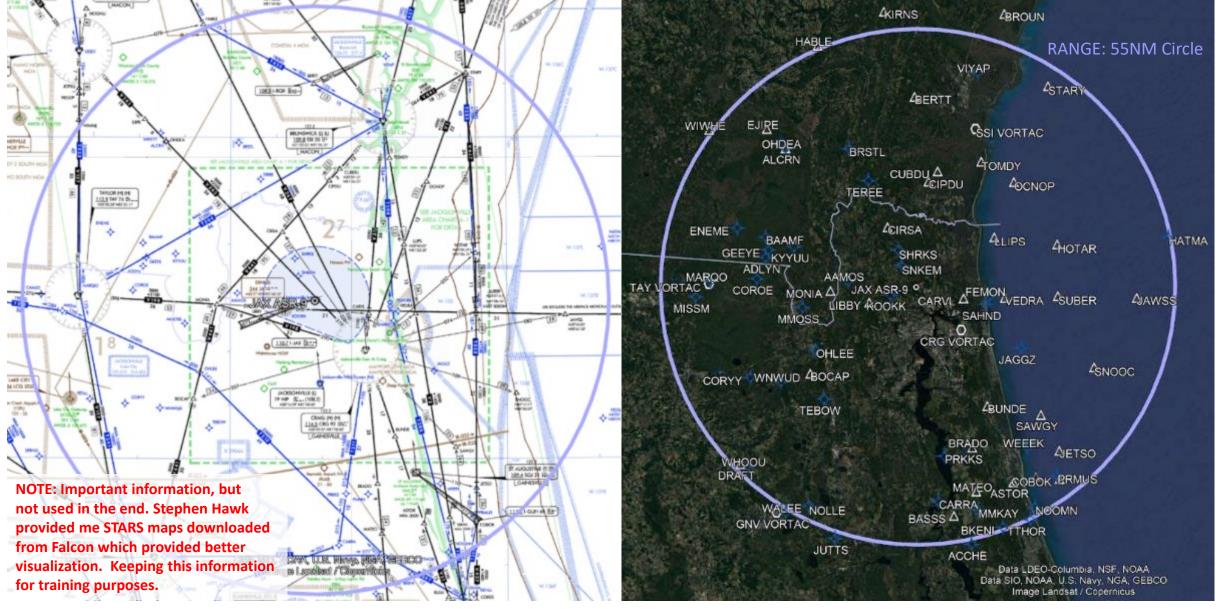
#JAX-CONC_sh_r20.lh - Notepad	_		×
<u>F</u> ile <u>E</u> dit F <u>o</u> rmat <u>V</u> iew <u>H</u> elp			
#			
# Incident elevation/theta : start end step			
88.39482134 90.00 0			
# Incident azimuth/phi : start end step			
162.72107 180.00 0			- 1
# Observation elevation/theta : start end step (disregarded if mon	ostati	ic)	
0.36 90 249			
# Observation azimuth/phi : start end step (disregarded if monosta	tic)		
0 359.28 499			
Ln 84, Col 1 100% Windows (CRLF)	UTF-	-8	
			_


Command Prompt						_		×
C:\Lucernhammer\d	lls>lucern_x6	4.exe JAX-CO	NC_sh_r20.lh	-threads 7 -	rcsfile	-rcsł	nead	^
lucernhammer MT v (c) 1998-2014 Tri								
> reading input > reading ACAD								
	Facet File Su	mmary						
File Big Parts	Nodes	Good Facets	Bad Facets	Units				
1 1	541	572		Inches				
> combining coin > building edge > found (318) en > adding facet p Electromag	geometry fro dges, (0) int geometry (1)	m facet geom erior edges, to Embree ra	etry (1) (318) knife	edges.				
Method	Active T	o Disk						
PO PTD SBR ILDC	yes yes no no	no no						
> setting up (7 > Bistatic PO co > Bistatic PTD o > calculation co > writing ASCII > writing ASCII	ontribution u contribution omplete. RCS file (JA	sing ray tra using ray tr X-CONC_sh_r2	acer 0.rcs)					

20°/10° Model *.facet (Lucernhammer RCS)

RSS BSAT Analysis – Initialization: Save the *.field files as *.rcs files and Create *.con files


	🔂 buildings - File Browser 📃 📃	×
<u>File Edit View Go</u>	Bookmarks Help	
Back • 🌧 Forw	vard - 🕆 🚳 🖏 🗱 🕋 💻 🔍 50% 🔍 List View 📑 🔍	
Places • 📀	Carssuser rss data standalone buildings	
🟠 rssuser	Name Size Type Date Modified - Owner Permissions	5
📰 Desktop	JAX-CONC_sh_r25.con 744 bytes plain text document September 26, 2023 11:37:09 AM PDT rssuser - RSS User -rwxrwx	
Computer	JAX-CONC_sh_r20.con 744 bytes plain text document September 26, 2023 11:37:01 AM PDT rssuser - RSS User -rwxrwx	
File System	JAX-CONC_sh_r15.con 744 bytes plain text document September 26, 2023 11:36:52 AM PDT rssuser - RSS User -rwxrwx	1
() VBOXADDITI ≜	JAX-CONC_sh_r10.con 744 bytes plain text document September 26, 2023 11:36:40 AM PDT rssuser - RSS User -rwxrwx	
🚺 Trash	JAX-CONC_sh_o.con 744 bytes plain text document September 26, 2023 11:33:40 AM PDT rssuser - RSS User -rwxrwx	
Documents	JAX-CONC_sh_r25.rcs 24.1 MB plain text document September 26, 2023 10:17:38 AM PDT rssuser - RSS User -rwxrwx	
Music	JAX-CONC_sh_r20.rcs 24.1 MB plain text document September 26, 2023 10:16:27 AM PDT rssuser - RSS User -rwxrwx	
Pictures	JAX-CONC_sh_r15.rcs 24.2 MB plain text document September 26, 2023 10:15:23 AM PDT rssuser - RSS User -rwxrwx	
Downloads	JAX-CONC_sh_r10.rcs 24.1 MB plain text document September 26, 2023 10:14:35 AM PDT rssuser - RSS User -rwxrwx	
🗎 tmp	JAX-CONC_sh_o.rcs 24.2 MB plain text document September 26, 2023 10:13:44 AM PDT rssuser - RSS User -rwxrwx	
		1
	-	E
	10 items, Free space: 183.4 GB	11


RSS BSAT Analysis – Initialization: Edit the Cultural Database (if Needed)

File Plot Overlays Color Inclusion Zones Multipath Zones Database: Jacksonville Latitude: 30:29:44.14 Longitude: -61:38:20.54 Structure Class: Isolated_Point	17 Building Number: None 438674.1 Point Height (ft): None Ground Height (ft): -4911 AGL Height (ft): 0.00	9.4	
Zoom UnZoom Whole	Detabase: Jacksen offe Laillada: 1025/03.6 Longitude:	UTM Zam Easting (r Richling (17 Statisting Marcine: House 17 Statisting Marcine: House 17 Statisting Marcine: House 17 Statistics 17 Statistics
Pan Off Add Feature Add Point Durdicate Feature	Hence Hence		
Duplicate Feature Move Feature Move Point Rotate Feature	Duplicate feature Nave Feature Nave Peint Retate Feature Delete Feature	\wedge	
Delete Feature Delete Point Modify Type	Delete Point Nuelly Type Diolasce Point Po	D	9 34
Distance Part 77 Building Height	Stop SateClass Refresh Screen Refresh Screen		April 1
Stop Selection Refresh Screen Redraw Screen		Ľ.	
		• (Tent)	

RSS BSAT Analysis – Initialization: Generate Point Fix File, Approaches

RSS BSAT Analysis – Initialization: Gather Fixes/Waypoints for Airspace

RSS BSAT Analysis – Initialization: Generate Point Fix File for RSS

🔽 룫 Jackson	nville	e IAX V	Vavr	ooir	nts.fix (/	~/rss	/data	/stan	s 💎 🖸
<u>File</u> Edit <u>Vie</u>	_		Tools	_	ocuments			_	<u>F</u> ile <u>E</u>
🌴 🊰 Oper	- 1 •	- Na	ve	-		Undo			* 6
					שין שיי ו		0	070	
Backsonville_	JAX_\	Naypoint	s.fix	8					📄 Jacks
08_UDAQI 08_IVTEF	0	2000 1900	30 30	25 27	36.40 51.76	- 81 - 81		8.99 8.87	CUBDU DRAFT
08_TCH	0	80	30	29	46.38	- 81	41 59	.87	EJIPE
26_YEJWO 26_WOQTA	0 0	2000 1600	30 30		8.30 55.09	- 81 - 81).43 3.35	ENEME FEMON
26_ZALDU	0	740	30	31	1.35	- 81	37 54	.54	FETAL
26_TCH 14 OSBAJ	0 0	76 2000	30 30	30 37	19.34 11.93	- 81 - 81		2.10	GEEYE
14_WOLQU	0	1700	30	32	50.42	- 81	46 31	.54	HATMA
14_TCH 32_POTME	0	81 2100	30 30	29 21	31.78 0.33	- 81 - 81		8.01 8.97	HOT AR J AGGZ
32_FIVOX	0	1700	30	25	22.57	- 81		.85	JAWSS
32_YUSKU 32 TCH	0 0	740 74	30 30	27 28	20.14 42.24	- 81 - 81		.35 .13	JETS0 JUTTS
SSI_VORTC	0	2000	31	З	1.85	- 81	26 45	. 47	KIRNS
TAY_VORTC CRG_VORTC	0	2000 2000	30 30	30 20	16.70 19.96	- 82 - 81		.45	KOOKK
GNV_VORTC	0	2000	29	41	31.61	- 81	16 22	2.70	LIBBY
SSI BQK	0 0	269 276	31 31	9 15	7.08 32.53	- 81 - 81		.81 8.74	LLIPS MARQO
4J1	0	335	31	12		- 81	54 21	.60	MATEO
09J FHB	0 0	261 266	31 30	4	28.10 42.60	- 81 - 81).00).30	MISSM
NRB	0	265	30		28.95	- 81		3.28	MMKAY MMOSS
CRG	0 0	291 336		20	10.80 40.03	- 81 - 81	30 52 48 21	2.00	MONIA
HEG VQQ	0	330	30 30	16 13	7.60	- 81		.80	NOLLE
SGJ	0	260	29	57	33.30	- 81	20 23	3 . 03	OCNOP
NIP NEN	0 0	273 347	30 30	14 20	1.34 58.18	- 81 - 81		1.81 .16	OCNOP
28J	0	298	29	39	30.18	- 81		2.21	PAINN
42J LCQ	0 0	446 451	29 30	10	41.10 55.40	- 82 - 82		.10	PRKKS
AAMOS	0	2000	30	30	53.90	- 81		.20	ROYES
ACCHE ADLYN	0 0	2000 2000	29 30	34 35	43.02 53.97	- 81 - 82	28 29 19 0	0.19	ROYES
ALCRN	0	2000	30	59	12.93	- 82		.03	SEBAG
ASTOR BAAMF	0 0	2000 2000	29 30	47 40	55.30 13.18	- 81 - 82		3.11 2.47	SHRKS
BASSS	0	2000	29			- 81	32 44		SNOOC
BERTT BKENI	0	2000 2000	31 29	10 38	2.12 17.84	- 81 - 81		3.99 5.89	ST ARY SUBER
BOCAP	0	2000	30	11	11.14	- 82	7 56	.72	TEBOW
BRADO BROUN	0 0	2000 2000	29 31	55 27	21.88 36.31	- 81 - 81		.89 .94	TEREE
BRSTL	0	2000	30	58	58.55	- 81	58 13	.83	TTHOR
BUNDE CAMJO	0 0	2000 2000	30 30	4 30	10.69 32.00	- 81 - 82		.99	VEDRA VIYAP
CARRA	0	2000	29	43	50.91	- 81	36 29	.10	WALEE
CARVL CIPDU	0 0	2000 2000	30 30	27 51	5.86 56.36	- 81 - 81		2.04	WEEEK
CIRSA	0	2000	30	42	18.28	- 81	48 42	2.70	WHOOU
COBOK COROE	0 0	2000 2000	29 30	48 31	30.53 22.29	- 81 - 82		.71	WIWHE WNWUD
SUITUL	Ť	Plain Te:		_	ab Width:	8 •	-	, Col 5	WINWOD
		. and les			in that.	5	211-41	, cor s	

Image: Constraint of the second sec	🛛 툯 Jackson	vill	le_JAX_Way	ypoi	nts.fix (⁄	~/rss	/data/	stand
Jacksonville_JAX_Waypoints.fix C Diacksonville_JAX_Waypoints.fix Diacksonville_JAX_Waypoints.fix Diacksonville_JAX_Waypoints.fix Diacksonville_JAX_Waypoints.fix Diacksonville_JAX_Waypoints.fix Diacksonville_JAX_Waypoints.fix Diacksonville_JAX_Waypoints.fix Diacksonville_JAX_Waypoints.fix Diacksonville_JAX_Waypoints.fix Diacksonville_JAX_Waypoints.fix Diacksonville_JAX_Waypoints.fix Diacksonville_JAX_Waypoints.fix Diacksonville_JAX	<u>F</u> ile <u>E</u> dit <u>V</u> iew	v	<u>Search</u> <u>T</u> oo	ls <u>D</u>	ocuments	<u>H</u> el	р	
UBDU 0 2000 30 4 7.39 -81 36 13.39 BRAFT 0 2000 31 3 22.04 -82 25 18.24 SIPE 0 2000 30 42 12.09 -82 26 9.31 EMME 0 2000 30 42 12.09 -82 36 20 ETAL 0 2000 30 37 30.00 -82 18 20.00 HATMA 0 2000 30 39 27.09 -80 39 15.73 HAGGZ 0 2000 30 16 23.63 -81 15 51.49 AWSS 0 2000 30 26 49.58 -80 47 18.15 IETSO 0 2000 30 26 49.58 -81 49 33.78 COKK 0 2000 30 27 54.13 -81 <t< th=""><th>🎦 🚰 Open</th><th>•</th><th>칠 Save</th><th>E</th><th>• 🄊</th><th>Undo</th><th>C</th><th>$\boldsymbol{\succ}$</th></t<>	🎦 🚰 Open	•	칠 Save	E	• 🄊	Undo	C	$\boldsymbol{\succ}$
RAFT 0 2000 29 51 50.71 -82 25 18.24 SIPE 0 2000 31 3 22.04 -82 18 50.00 SIME 0 2000 30 27 31.57 -81 23 36.20 ETAL 0 2000 30 37 30.00 -82 30 24.76 GEYE 0 2000 30 37 30.00 -82 18 20.00 AdALE 0 2000 30 39 27.09 -80 39 15.73 IOTAR 0 2000 30 38 23.32 -81 6 45.71 IAGGZ 0 2000 30 26 49.58 -80 47 18.15 IETSO 0 2000 30 27.41.3 81 48 5.26 VITTS 0 2000 30 27.41.3 81 48 5.26 VITUU 0 2000 30 27.57.41.3 81 48] Jacksonville	4Χ_	_Waypoints.fi	x 🙁				
E3JPE 0 2000 31 3 22.04 -82 18 50.00 EMEM 0 2000 30 42 12.09 -82 26 9.31 EEMON 0 2000 30 27 31.57 -81 23 36.20 EETAL 0 2000 30 37 30.00 +82 18 20.00 HABLE 0 2000 30 39 27.09 +80 39 15.73 HATMA 0 2000 30 16 23.63 +81 15 51.49 HAWSS 0 2000 30 26 49.58 +80 47 18.15 ETSO 0 2000 30 26 49.53 +81 49 33.78 IUTTS 0 2000 30 27 54.13 +81 48 5.26 YUU 0 2000 30 27 54.13 +81 48 5.26 YUU 0 2000 30 25.14.32 +82 </td <td>CUBDU</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	CUBDU							
ENEME 0 2000 30 42 12.09 -82 26 9.31 EEMON 0 2000 30 27 31.57 -81 23 36.20 EETAL 0 2000 30 37 30.00 -82 18 20.00 ABLE 0 2000 30 37 30.00 -82 18 20.00 AMS 0 2000 30 39 27.09 -80 39 15.73 AGGZ 0 2000 30 28 23.32 -81 6 45.71 AGGZ 0 2000 30 26 49.58 -80 47 18.15 ILTSS 0 2000 30 27 54.13 -81 49 33.78 COKK 0 2000 30 27 81.2 81 52 66 22 40.00 LIPS 0 2000 30 27								
EMON 0 2000 30 27 31.57 81 23 36.20 ETAL 0 2000 30 11 3.69 82 30 24.76 GEYE 0 2000 30 37 30.00 82 18 20.00 AATMA 0 2000 30 39 27.09 80 39 15.73 AOTAR 0 2000 30 16 23.63 81 15 51.49 AAGGZ 0 2000 30 26 49.58 80 47 18.15 IETSO 0 2000 30 26 49.58 80 47 18.15 IETSO 0 2000 30 27 54.13 81 49 33.78 COKK 0 2000 30 26 18.61 81 15 5.76 IIBBY 0 2000 30 36 35.57 82 32 24.562 MATOO 2000 30 36 53.15.29 82								
ET AL 0 2000 30 11 3.69 -82 30 24.76 IEEYE 0 2000 30 37 30.00 -82 18 20.00 IABLE 0 2000 30 39 27.09 -80 39 15.73 IATMA 0 2000 30 38 23.32 -81 6 45.71 IAGGZ 0 2000 30 26 49.58 -80 47 18.15 IETSO 0 2000 29 36 0.00 -82 2 0.00 IUTTS 0 2000 30 27 54.13 -81 48 5.26 CYVUU 0 2000 30 26 18.61 -81 53 16.94 LIPS 0 2000 30 26 35.57 -82 32 45.62 MARQ 0 2000 30 27 28.15 -82 6 32.24 MKAY 0 2000 30 25 14.32								
BEEYE 0 2000 30 37 30.00 -82 18 20.00 HABLE 0 2000 31 21 9.68 -82 6 9.96 HATMA 0 2000 30 32 27.09 -80 39 15.73 IOTAR 0 2000 30 16 23.32 -81 6 45.71 IAGGZ 0 2000 30 28 23.32 -81 6 45.71 IAGGZ 0 2000 30 28 23.32 -81 6 45.70 UTTS 0 2000 30 27 54.13 81 49 33.78 COKK 0 2000 30 27 54.13 81 48 5.26 CITTS 0 2000 30 23.57 82 24 66 LIPS 0 2000 30 21.57 82 26 22.08								
HABLE 0 2000 31 21 9.68 .82 6 9.96 HATMA 0 2000 30 39 27.09 .80 39 15.73 HAGGZ 0 2000 30 16 23.63 .81 15 51.49 HAGGZ 0 2000 30 16 23.63 .81 15 51.49 HAWSS 0 2000 29 36 0.00 .82 2 0.00 CIRNS 0 2000 31 28 20.83 .81 49 33.78 COOKK 0 2000 30 26 18.61 .81 53 16.94 LIPS 0 2000 30 40 0.97 .81 22 18.26 MARQO 0 2000 30 27 28.15 .82 36 32.24 MARQO 0 2000 30 25 14.32 .82 9 52.08 MARQO 0 2000 30 28 49.00								
AATMA 0 2000 30 39 27.09 -80 39 15.73 AGGZ 0 2000 30 38 23.32 -81 6 45.71 AAGGZ 0 2000 30 16 23.63 -81 15 51.49 AWSS 0 2000 29 54 32.12 -81 6 45.70 UTTS 0 2000 30 26 49.58 80 47 18.15 ITRNS 0 2000 30 27 54.13 -81 48 5.26 CYYUU 0 2000 30 30 53.57 -82 32 45.62 LIPS 0 2000 30 40 0.97 -81 27 12.60 MARQO 0 2000 30 30 53.57 -82 32 45.62 MARQO 0 2000 30 27 28.15 -82 95.20 8 101 15.15 MARQO 2000 30 25 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
AOTAR 0 2000 30 38 23.32 -81 6 45.71 AAGGZ 0 2000 30 16 23.63 -81 15 51.49 AAWSS 0 2000 30 26 49.58 -80 47 18.15 LETSO 0 2000 29 36 0.00 -82 2 0.00 UITTS 0 2000 30 27 54.13 -81 49 33.78 OOKK 0 2000 30 27 54.13 -81 48 5.26 YIUU 0 2000 30 26 18.61 -81 53 16.94 LIPS 0 2000 30 26 18.21 72 12.60 MKAY 0 2000 30 27 74.13 81 48 5.26 MARDO 0 2000 30 25 14.32 -82 9 5.02 MARDO 2000 29 46 0.71 -81 27								
AGGZ 0 2000 30 16 23.63 -81 15 51.49 AWSS 0 2000 30 26 49.58 -80 47 18.15 IETSO 0 2000 29 36 0.00 -82 2 0.00 IUTTS 0 2000 31 28 2.83 -81 49 33.78 COOKK 0 2000 30 27 54.13 -81 49 35.76 COOKK 0 2000 30 27 54.13 -81 49 35.76 COOKK 0 2000 30 26 18.61 -81 53 16.94 LIPS 0 2000 30 53.57 -82 36 32.24 MARQO 0 2000 30 27 28.15 -82 63 32.24 MKAY 0 2000 30 28 49.00 -82 2 53.44 MONIA 0 2000 29 42 80.90 -81 <td>HOTAR</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	HOTAR							
AWSS 0 2000 30 26 49.58 -80 47 18.15 IETSO 0 2000 29 54 32.12 -81 6 45.70 IUTTS 0 2000 30 27 54.13 -81 49 33.78 000KK 0 2000 30 27 54.13 -81 48 5.26 (YYUU 0 2000 30 26 18.61 -81 53 16.94 LIPS 0 2000 30 40 0.97 -81 22 18.28 MARQO 0 2000 30 40 0.97 -81 27 12.60 MISS 0 2000 30 30 27 28.15 -82 36 32.24 MMKAY 0 2000 30 28 49.00 -82 25.08 MONIA 0 2000 30 28 49.00 -82 25.08 MONIA 0 2000 29 51 43.99 -81 </td <td>AGGZ</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	AGGZ							
HETSO 0 2000 29 54 32.12 -81 6 45.70 UUTS 0 2000 29 36 0.00 -82 2 0.00 LITNS 0 2000 31 28 20.83 -81 49 33.78 JOOKK 0 2000 30 27 54.13 -81 48 5.26 CYYUU 0 2000 30 28 18.61 -81 53 16.94 LIPS 0 2000 30 40 0.97 -81 22 18.28 MARQO 0 2000 30 40 0.97 -81 27 12.60 MISSM 0 2000 30 27 28.15 -82 36 32.24 MKAY 0 2000 30 25 14.32 -82 9 52.08 MONIA 0 2000 30 25 14.32 -82 9 52.08 MONIA 0 2000 30 51 43.99	AWSS							
NUTTS 0 2000 29 36 0.00 -82 2 0.00 XIRNS 0 2000 31 28 20.83 -81 49 33.78 COOKK 0 2000 30 27 54.13 -81 48 5.26 XYUU 0 2000 30 26 18.61 -81 53 16.94 LIPS 0 2000 30 26 18.61 -81 53 16.94 LIPS 0 2000 30 35.57 -82 36 32.24 MARQ 0 2000 30 27 54.13 -81 26 49.15 MMKAY 0 2000 30 25 14.32 -82 9 52.08 MONIA 0 2000 30 28 49.00 -82 2 53.44 MODE 2000 30 51 43.99 -81 17 20.62 ONOP 0 2000 29 53 31.23 -81 45	JETS0	0						
COOKK 0 2000 30 27 54.13 -81 48 5.26 YYUU 0 2000 30 38 13.83 -82 11 55.76 LIBBY 0 2000 30 26 18.61 -81 53 16.94 LIPS 0 2000 30 40 0.97 -81 22 18.28 MARQO 0 2000 30 30 53.57 -82 32 45.62 MATEO 0 2000 29 41 55.42 -81 26 49.15 MONIA 0 2000 30 25 14.32 -82 9 52.08 MONIA 0 2000 30 26 49.00 -82 25.3.44 MOLLE 0 2000 30 51 43.99 -81 17 20.62 VCNOP 0 2000 30 16 6.04 -82 6 32.53 VAINN 0 2000 29 32 26.01 -81	JUTTS	0	2000 2			- 82	2 0	.00
YYUU 0 2000 30 38 13.83 -82 11 55.76 LIBBY 0 2000 30 26 18.61 -81 53 16.94 LIPS 0 2000 30 40 0.97 81 22 18.28 MARQO 0 2000 30 35 55.75 -82 32 45.62 MATEO 0 2000 30 27 28.15 -82 36 32.24 MKAY 0 2000 30 25 14.32 -82 9 52.08 MONIA 0 2000 30 25 14.32 -82 9 52.08 MONIA 0 2000 30 25 43.399 -81 17 20.62 OCNOP 0 2000 30 51 43.99 -81 17 20.62 ONNP 0 2000 29 53 24.66 -81 30 11.05 PALEE 0 2000 29 32 26.01 <td>KIRNS</td> <td></td> <td></td> <td>1 28</td> <td>20.83</td> <td>- 81</td> <td>49 33.</td> <td>.78</td>	KIRNS			1 28	20.83	- 81	49 33.	.78
LIBBY 0 2000 30 26 18.61 -81 53 16.94 LLIPS 0 2000 30 40 0.97 -81 22 18.28 MARQO 0 2000 30 53.57 -82 32 45.62 MATEO 0 2000 30 27 28.15 -82 36 32.24 MMKAY 0 2000 29 46 0.71 -81 27 12.60 MMKAY 0 2000 30 27 28.15 -82 36 32.24 MMKAY 0 2000 30 25 14.32 -82 9 52.08 MONIA 0 2000 30 28 49.00 -82 2 53.44 JOLIE 0 2000 30 51 43.99 -81 17 20.62 JONOP 0 2000 30 51 43.99 -81 17 20.62 JAINN 0 2000 29 53 31.23 -8	KOOKK							
LIPS 0 2000 30 40 0.97 81 22 18.28 MARQO 0 2000 30 30 53.57 82 32 45.62 MATEO 0 2000 29 46 0.71 81 27 12.60 MISS 0 2000 29 41 55.42 81 26 32.24 MMASS 0 2000 30 27 28.15 82 36 32.24 MMASS 0 2000 30 25 14.32 82 9 52.08 MONIA 0 2000 30 28 49.00 82 2 5.344 MOLE 0 2000 29 42 28.05 81 17 20.62 DCNOP 0 2000 30 51 43.99 81 17 20.62 DCNOP 2000 29 53 31.23 81 45 59.1 PRMUS 0 2000 29 49 5.67 81 <t< td=""><td>< YYUU</td><td></td><td></td><td>0 38</td><td></td><td></td><td></td><td></td></t<>	< YYUU			0 38				
MARQ0 0 2000 30 30 53.57 -82 32 45.62 MATEO 0 2000 29 46 0.71 -81 27 12.60 MISSM 0 2000 30 27 28.15 -82 36 32.24 MKAY 0 2000 30 25 14.32 -82 9 52.08 MONIA 0 2000 30 25 14.32 -82 9 52.08 MONIA 0 2000 30 25 14.32 -82 9 52.08 MONIA 0 2000 30 51 43.99 -81 17 20.62 MONP 0 2000 30 51 43.99 -81 17 20.62 PLEE 0 2000 30 16 6.04 +82 55.91 VAINN 0 2000 29 53 24.66 -81 30 11.05 PRKS 0 2000 29 32 26.01 -81 <td>_I BBY</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	_I BBY							
MATEO 0 2000 29 46 0.71 -81 27 12.60 MISSM 0 2000 30 27 28.15 -82 36 32.24 MKAY 0 2000 30 25 14.32 -82 9 52.08 MONIA 0 2000 30 25 14.32 -82 9 52.08 MONIA 0 2000 30 25 14.32 -82 9 52.08 MONIA 0 2000 29 42 56.80 -82 8 25.96 MONP 0 2000 30 51 43.99 -81 17 20.62 DCNOP 0 2000 30 16 6.04 +82 6 32.53 PALEE 0 2000 29 53 31.23 -81 47 20.74 RWUS 0 2000 29 32 26.01 -81 25 2.86 ROYES 0 2000 30 7 1.23	_LIPS							
MISSM 0 2000 30 27 28.15 -82 36 32.24 MMKAY 0 2000 29 41 55.42 -81 26 49.15 MMOSS 0 2000 30 25 14.32 -82 9 52.08 MONIA 0 2000 30 28 49.00 -82 2 53.44 JOLLE 0 2000 29 42 56.80 -82 8 25.129 JONOP 0 2000 30 51 43.99 -81 17 20.62 JONOP 0 2000 30 51 43.99 -81 17 20.62 JAINN 0 2000 29 53 31.23 -81 34 55.91 PRMUS 0 2000 29 49 5.67 -81 7 20.74 ROYES 0 2000 29 42 6.1 11 11.105 SWEMGY 0 2000 30 2 11.92 -81<					53.57			
IMKAY 0 2000 29 41 55.42 81 26 49.15 IMOSS 0 2000 30 25 14.32 -82 9 52.08 IONIA 0 2000 30 25 14.32 -82 9 52.08 IONIA 0 2000 30 28 49.00 -82 2 53.44 IOLLE 0 2000 29 42 26.60 -82 8 25.96 IOOMN 0 2000 30 51 43.99 -81 17 20.62 ICNOP 0 2000 30 16 6.04 -82 6 32.53 VILEE 0 2000 29 53 24.66 -81 30 11.05 PRKS 0 2000 29 32 26.01 -81 25 2.86 OYES 0 2000 30 37 23.23 -81								
MOSS 0 2000 30 25 14.32 -82 9 52.08 MONIA 0 2000 30 25 14.32 -82 9 52.08 MONIA 0 2000 29 42 56.80 -82 8 25.96 MONP 0 2000 29 42 28.05 -81 12 51.29 NCNOP 0 2000 30 51 43.99 -81 17 20.62 DCNOP 0 2000 30 16 6.04 -82 6 32.53 PAINN 0 2000 29 53 31.23 -81 34 55.91 PRMUS 0 2000 29 32 26.01 -81 25 52.86 ROYES 0 2000 29 32 26.01 -81 25 52.86 SAWGY 0 2000 30 37 73.23 -81 45 59.13 SNKEM 0 2000 30 37 23.23 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
NONIA 0 2000 30 28 49.00 -82 2 53.44 NOLLE 0 2000 29 42 56.80 -82 8 25.96 NOMN 0 2000 29 42 28.05 -81 12 51.29 ICNOP 0 2000 30 51 43.99 -81 17 20.62 DCNOP 0 2000 30 51 43.99 -81 17 20.62 DHLEE 0 2000 30 16 6.04 -82 6 32.53 AINN 0 2000 29 53 31.23 -81 34 55.91 PRMUS 0 2000 29 32 26.01 -81 25 52.86 GVYES 0 2000 30 2 11.92 -81 15 15.10 SNCC 0 2000 30 37 23.23 81								
NOLLE 0 2000 29 42 56.80 -82 8 25.96 NOMM 0 2000 29 42 28.05 -81 12 51.29 OCNOP 0 2000 30 51 43.99 -81 17 20.62 OCNOP 0 2000 30 51 43.99 -81 17 20.62 DHLEE 0 2000 30 16 6.04 -82 6 32.53 AINN 0 2000 29 53 31.23 -81 7 20.74 RWLS 0 2000 29 32 26.01 -81 25 52.86 RWFS 0 2000 30 21 1.92 81 11 11.16 SEBAG 0 2000 30 37 23.23 -81 45 59.13 SNKEM 0 2000 30 37 23.23 -81								
NOOMN 0 2000 29 42 28.05 -81 12 51.29 NCNOP 0 2000 30 51 43.99 -81 17 20.62 DCNOP 0 2000 30 51 43.99 -81 17 20.62 DHLEE 0 2000 30 16 6.04 -82 6 32.53 PAINN 0 2000 29 53 31.23 -81 34 55.91 PRMUS 0 2000 29 32 26.01 -81 25 52.86 ROYES 0 2000 29 32 26.01 -81 25 52.86 GAWGY 0 2000 30 37 23.23 -81 45 59.13 SNEK 0 2000 30 37 23.23 -81 45 59.13 SNCOC 0 2000 30 37 23.23 -81								
DCNOP 0 2000 30 51 43.99 -81 17 20.62 DCNOP 0 2000 30 51 43.99 -81 17 20.62 DHLEE 0 2000 30 51 43.99 -81 17 20.62 DHLEE 0 2000 30 16 6.04 -82 6 32.53 AINN 0 2000 29 53 31.23 -81 34 55.91 PRKUS 0 2000 29 52 6.01 -81 25 52.86 XOYES 0 2000 29 32 26.01 -81 25 52.86 XOYES 0 2000 30 21.92 -81 11 11.16 SEBAG 0 2000 30 37 23.23 -81 45 15.10 SNKEM 0 2000 30 12 4.70 81 84.048								
DCNOP 0 2000 30 51 43.99 81 17 20.62 HLEE 0 2000 30 16 6.04 -82 6 32.53 AINN 0 2000 29 53 24.66 -81 30 11.05 PRKKS 0 2000 29 49 5.67 -81 7 20.74 RMUS 0 2000 29 49 5.67 -81 7 20.74 RWYES 0 2000 29 42 6.01 -81 25 52.86 GAVES 0 2000 29 42 2.01 81 11 11.16 EEBAG 0 2000 30 2 11.92 81 14 59.13 SNKEM 0 2000 30 2 12.78 80 58 1.40 SNOCC 0 2000 30 27 24.49 81 6 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
DHLEE 0 2000 30 16 6.04 -82 6 32.53 AINN 0 2000 29 53 24.66 -81 30 11.05 PRKKS 0 2000 29 53 31.23 -81 34 55.91 PRMUS 0 2000 29 32 26.01 -81 7 20.74 RVFS 0 2000 29 32 26.01 -81 25 52.86 GVFS 0 2000 29 32 26.01 -81 12 34.72 SMGY 0 2000 30 37 23.23 -81 45 59.13 SMKEM 0 2000 30 37 23.23 -81 45 59.13 SNACC 0 2000 30 37 23.23 -81 45 59.13 SNACC 0 2000 30 21 2.77 80								
PAINN 0 2000 29 53 24.66 -81 30 11.05 PRKKS 0 2000 29 53 31.23 -81 34 55.91 PRMUS 0 2000 29 53 24.66 -81 25 52.86 VOYES 0 2000 29 32 26.01 -81 25 52.86 VOYES 0 2000 30 21 1.92 -81 11 11.16 SEBAG 0 2000 30 37 23.23 -81 45 59.13 SNKEM 0 2000 30 37 23.23 -81 45 59.13 SNKEM 0 2000 30 37 23.23 -81 45 59.13 SNKEM 0 2000 30 12 12.78 80 58 1.40 STARY 0 2000 30 54 59.3 72.25								
PRKKS 0 2000 29 53 31.23 81 34 55.91 PRMUS 0 2000 29 5.67 -81 7 20.74 PRMUS 0 2000 29 32 26.01 -81 25 52.86 ROYES 0 2000 29 32 26.01 -81 25 52.86 SAWGY 0 2000 29 32 26.01 -81 25 52.86 SAWGY 0 2000 30 2 1.92 -81 11 11.16 SEBAG 0 2000 30 37 23.23 -81 45 59.13 SINKEM 0 2000 30 37 23.23 -81 45 15.10 SNOCC 0 2000 30 12 4.70 -81 8 40.48 SUBER 0 2000 30 5 45.93 82 4								
PRMUS 0 2000 29 49 5.67 -81 7 20.74 ROYES 0 2000 29 32 26.01 -81 25 52.86 ROYES 0 2000 29 32 26.01 -81 25 52.86 ROYES 0 2000 29 32 26.01 -81 12 52.86 ROYES 0 2000 30 2 11.92 -81 11 11.16 SEBAG 0 2000 30 37 23.23 -81 45 59.13 SNKEM 0 2000 30 37 23.23 -81 45 15.10 SNOC 0 2000 30 12 12.78 80 58 1.40 STARY 0 2000 30 27 4.49 -81 6 54.46 BOW 0 2000 30 52 10.90 -81								
ROYES 0 2000 29 32 26.01 -81 25 52.86 ROYES 0 2000 29 32 26.01 -81 25 52.86 GWGY 0 2000 30 2 11.92 -81 11 11.16 SEBAG 0 2000 30 37 23.23 -81 45 59.13 SHRKS 0 2000 30 37 23.23 -81 45 59.13 SNKEM 0 2000 30 37 23.23 -81 45 59.13 SNKOC 0 2000 30 37 23.23 -81 45 59.13 SNKOC 0 2000 30 12 12.77 -81 8 40.48 SUBER 0 2000 30 54 59.9 -82 4 2.70 FEREE 0 2000 30 56 6.64 -81	PRMUS							
ROYES 0 2000 29 32 26.01 -81 25 52.86 SAWGY 0 2000 30 2 11.92 -81 11 11.16 SEBAG 0 2000 29 49 4.24 -81 12 34.72 SHRKS 0 2000 30 37 23.23 -81 45 59.13 SNKEM 0 2000 30 34 6.24 -81 45 15.10 SNOOC 0 2000 30 12 1.77 -81 8 40.48 SUBER 0 2000 30 27 24.49 -81 6 45.46 EBOW 0 2000 30 54 59.3 27.25 0MDY 2000 30 54 -81 43 32.70 THOR 0 2000 30 56 6.64 -81 25 24.93 THOR 2000	ROYES							
SAWGY 0 2000 30 2 11.92 -81 11 11.16 EEBAG 0 2000 29 49 4.24 -81 12 34.72 SHRKS 0 2000 30 37 23.23 -81 45 59.13 SNKEM 0 2000 30 34 6.24 -81 45 15.10 SNOC 0 2000 30 12 1.77 -80 58 1.40 SNOC 0 2000 30 12 4.70 -81 6 45.46 EBDW 0 2000 30 5 45.93 -82 4 32.70 EREE 0 2000 30 56 6.64 -81 25 24.93 THOR 0 2000 30 27 6.36 -81 14 0.03 EEDRA 0 2000 30 27 6.36 -81 14<	ROYES							
SEBAG 0 2000 29 49 4.24 -81 12 34.72 SHRKS 0 2000 30 37 23.23 -81 45 59.13 SNKEM 0 2000 30 37 23.23 -81 45 15.10 SNKCO 0 2000 30 34 6.24 -81 45 15.10 SNOOC 0 2000 30 12 12.78 -80 58 1.40 STARY 0 2000 30 12 4.70 -81 8 40.48 SUBER 0 2000 30 27 24.49 -81 6 55.47.25 OMDY 0 2000 30 54 55.20 -81 14 0.03 THOR 0 2000 30 56 6.64 -81 25 24.93 THOR 0 2000 30 27 6.3 81 19 40.40 IYAP 0 2000 30 27 6.3	SAWGY				11.92			
SHRKS 0 2000 30 37 23.23 -81 45 59.13 SNKEM 0 2000 30 34 6.24 -81 45 15.10 SNKOC 0 2000 30 12 12.78 -80 58 1.40 STARY 0 2000 30 12 12.78 -80 58 1.40 STARY 0 2000 30 12 12.78 -80 58 1.40 SUBER 0 2000 30 27 24.49 -81 6 45.46 EBOW 0 2000 30 52 10.90 -81 53 27.25 OMDY 0 2000 30 56 6.64 -81 25 24.93 THOR 0 2000 30 27 6.36 -81 14 0.03 (EDRA 0 2000 30 27 6.36 -81 19 40 (IYAP 0 2000 30 15 8.15	SEBAG		2000 2		4.24			
NOOC 0 2000 30 12 12.78 -80 58 1.40 STARY 0 2000 31 12 4.70 -81 8 40.48 SUBER 0 2000 30 27 24.49 -81 6 45.46 EEB0W 0 2000 30 54 5.93 -82 4 32.70 TEREE 0 2000 30 52 10.90 -81 53 27.25 OMDY 0 2000 30 52 10.90 -81 53 27.25 OMDY 0 2000 30 56 6.64 -81 25 24.93 THOR 0 2000 30 27 6.36 -81 19 49.40 (IYAP 0 2000 31 15 8.15 -81 26 8.18 (ALEE 0 2000 29 51 25.91 -82 <td< td=""><td>SHRKS</td><td></td><td></td><td></td><td>23.23</td><td>- 81</td><td></td><td>.13</td></td<>	SHRKS				23.23	- 81		.13
STARY 0 2000 31 12 4.70 -81 8 40.48 SUBER 0 2000 30 27 24.49 -81 6 45.46 EBOW 0 2000 30 5 45.93 -82 4 32.70 EREE 0 2000 30 52 10.90 -81 53 27.25 OMDY 0 2000 30 56 6.64 -81 25 24.93 THOR 0 2000 30 56 6.64 -81 19 49.40 /EDRA 0 2000 30 27 6.36 -81 19 49.40 /IYAP 0 2000 31 15 8.15 -81 26 8.18 /ALEE 0 2000 29 41 36.05 -82 14 7.07 //EEEK 0 2000 29 55 18.81 -81 14 37.77 //HOU 0 2000 29 55 18.81	SNKEM							
SUBER 0 2000 30 27 24.49 -81 6 45.46 EBOW 0 2000 30 5 45.93 -82 4 32.70 EREE 0 2000 30 52 10.90 -81 53 27.25 OMDY 0 2000 30 56 6.64 -81 25 24.93 THOR 0 2000 30 56 6.64 -81 25 24.93 THOR 0 2000 30 56 6.64 -81 25 24.93 THOR 0 2000 30 27 6.36 -81 14 0.03 /EDRA 0 2000 31 15 81 26 8.18 /ALEE 0 2000 29 51 8.81 4 37.77 /HOOU 0 2000 29 51 28.21 3 30.65 /HYT <td>SNOOC</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	SNOOC							
EBOW 0 2000 30 5 45.93 -82 4 32.70 IEREE 0 2000 30 52 10.90 -81 53 27.25 OMDY 0 2000 30 52 10.90 -81 53 27.25 TMDY 0 2000 30 52 10.90 -81 53 27.25 THOR 0 2000 29 39 53.20 -81 14 0.03 (EDRA 0 2000 30 27 6.36 -81 19 49.40 (IYAP 0 2000 31 15 8.15 -81 26 8.18 /ALEE 0 2000 29 41 36.05 -82 14 7.77 /HOU 0 2000 29 51 25.91 -82 23 30.65 /HYYT 0 2000 31 0 45.37 -82 <t< td=""><td>STARY</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	STARY							
EREE 0 2000 30 52 10.90 -81 53 27.25 OMDY 0 2000 30 56 6.64 -81 25 24.93 THOR 0 2000 29 39 53.20 -81 14 0.03 VEDRA 0 2000 30 27 6.36 -81 19 49.40 /IYAP 0 2000 31 15 8.15 -81 26 8.18 /ALEE 0 2000 29 41 36.05 -82 14 7.07 //EEEK 0 2000 29 51 25.91 -82 23 30.65 /HYYT 0 2000 31 0 45.37 -82 15 20.17 /IWHE 0 2000 31 3 11.97 -82 33 19.57 /NUD 0 2000 30 9 28.11 10.74 <td>SUBER</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	SUBER							
OMDY 0 2000 30 56 6.64 -81 25 24.93 THOR 0 2000 29 39 53.20 -81 14 0.03 VEDRA 0 2000 30 27 6.36 -81 19 49.40 VIYAP 0 2000 30 15 8.15 -81 26 8.18 VALEE 0 2000 29 41 36.05 -82 14 7.07 VEEKK 0 2000 29 51 18.81 -81 14 37.77 VHOU 0 2000 29 51 25.91 -82 13 30.65 HYYT 0 2000 31 0 45.37 -82 15 20.17 VIWHE 0 2000 31 3 11.97 -82 33 19.57 VAUD 0 2000 30 9 28.11 -82 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
THOR 0 2000 29 39 53.20 81 14 0.03 /EDRA 0 2000 30 27 6.36 -81 19 49.40 /IYAP 0 2000 31 15 8.15 -81 26 8.18 /ALEE 0 2000 29 41 36.05 -82 14 7.07 //EEEK 0 2000 29 51 8.81 -81 14 37.77 /HOOU 0 2000 29 51 25.91 -82 23 30.65 /HYYT 0 2000 31 0 45.37 -82 15 20.17 /IWHE 0 2000 31 3 11.97 -82 33 19.57 /NUD 0 2000 30 9 28.11 -82 15 10.74								
/EDRA 0 2000 30 27 6.36 -81 19 49.40 /IYAP 0 2000 31 15 8.15 -81 26 8.18 /ALEE 0 2000 29 41 36.05 -82 14 7.07 /EEEK 0 2000 29 51 18.81 -81 437.77 /HOUU 0 2000 29 51 25.91 -82 23 30.65 /HYYT 0 2000 31 0 45.37 -82 15 20.17 /IWHE 0 2000 31 3 11.97 -82 33 19.57 /INUD 0 2000 30 9 28.11 -82 15 10.74								
/IYAP 0 2000 31 15 8.15 -81 26 8.18 /ALEE 0 2000 29 41 36.05 -82 14 7.07 /EEEK 0 2000 29 51 31.14 37.77 /HOUU 0 2000 29 51 25.91 -82 23 36.65 /HYYT 0 2000 31 0 45.37 -82 15 20.17 /IWHE 0 2000 31 3 11.97 -82 33 19.57 /NWUD 0 2000 30 9 28.11 -82 15 10.74								
ALEE 0 2000 29 41 36.05 -82 14 7.07 I/EEEK 0 2000 29 55 18.81 -81 14 37.77 I/HOOU 0 2000 29 55 18.81 -81 14 37.77 I/HOOU 0 2000 29 51 25.91 -82 23 30.65 I/HYY 0 2000 31 0 45.37 -82 15 20.17 I/WHE 0 2000 31 3 11.97 -82 33 19.57 I/WUD 0 2000 30 9 28.11 -82 15 10.74								
IEEEK 0 2000 29 55 18.81 -81 14 37.77 IHOOU 0 2000 29 51 25.91 -82 23 30.65 IHYYT 0 2000 31 0 45.37 -82 15 20.17 IWHE 0 2000 31 3 11.97 -82 33 19.57 INWUD 0 2000 30 9 28.11 -82 15 10.74								
IHOOU 0 2000 29 51 25.91 -82 23 30.65 IHYYT 0 2000 31 0 45.37 -82 15 20.17 JIWHE 0 2000 31 3 11.97 -82 33 19.57 O 2000 30 9 28.11 -82 15 10.74								
/HYYT 0 2000 31 0 45.37 -82 15 20.17 /IWHE 0 2000 31 3 11.97 -82 33 19.57 /INUD 0 2000 30 9 28.11 -82 15 10.74								
/IWHE 0 2000 31 3 11.97 -82 33 19.57 /WWD 0 2000 30 9 28.11 -82 15 10.74								
/NWUD 0 2000 30 9 28.11 -82 15 10.74								
	NWUD							
			Plain Text	- T		8 -	1	

01234567890	1234	567890	1234	4567	7890123	4567890123456
08_UDAQI	0	2000	30	25	36.40	-81 55 33.99
08_IVTEF	0	1900	30	27	51.76	-81 48 13.87
08_TCH	0	80	30	29	46.38	-81 41 59.87
26_YEJW0	0	2000	30	34	8.30	-81 27 40.43
26_WOQTA	0	1600	30	31	55.09	-81 34 58.35
26_ZALDU	0	740	30	31	1.35	-81 37 54.54
26_TCH	0	76	30	30	19.34	-81 40 12.10
14_OSBAJ	0	2000	30	37	11.93	-81 52 25.85
14_WOLQU	0	1700	30	32	50.42	-81 46 31.54
14_TCH	0	81	30	29	31.78	-81 42 3.01
32_POTME	0	2100	30	21	0.33	-81 30 33.97
32_FI VOX	0	1700	30	25	22.57	-81 36 26.85
32_YUSKU	0	740	30	27	20.14	-81 39 5.35
32_TCH	0	74	30	28	42.24	-81 40 56.13
SSI_VORTC	0	2000	31	з	1.85	-81 26 45.47
TAY_VORTC	0	2000	30	30	16.70	-82 33 10.45
CRG_VORT C	0	2000	30	20	19.96	-81 30 35.74
GNV_VORT C	0	2000	29	41	31.61	-81 16 22.70

SAMPLE TEXT FILE SETUP

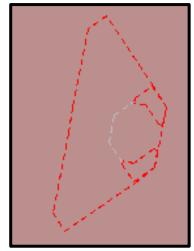
- * Create file using Excel and save as a CSV (space delimited) file
- * Edit CSV file to match spacing as shown above
- * Top line "0123..." is used for spacing only. Do not leave this line in the file.

NOTE: Important information, but not used in the end. Stephen Hawk provided me STARS maps downloaded from Falcon which provided better visualization. Keeping this information for training purposes.

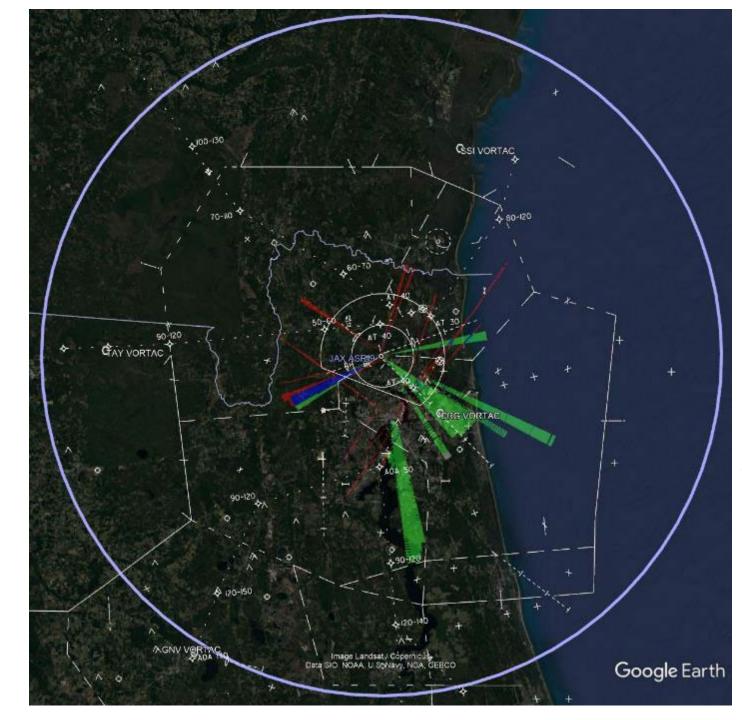
RSS BSAT Analysis – Initialization: Import Point Fix File using RSS Point Fix Editor

St FAA See and Support System Version 7.64 File File St FAA BAT DataLink ASAT ASAT BSAT Database Source Unit Selection Stand Alone NOTE: Important information, but not used in the end. Stephen Hawk provided me STARS maps downloaded from Falcon which provided better visualization. Keeping this information for training purposes.																	Folder
S FAA ses al 1-1 File import Tools RSAT BSAT DataLink ASAT ASDE-X ARSR4 ARSR1/2 ASR11 ASR0 CDE Terrain Filer Filter File Editor File File File Import from ASCII File																	-
al 1-1 RSAT BSAT DataLink ASAT ASDE-X ARSR4 ARSR 1/2 ASR11 ASR8 CDE Terrain Flight Path Point Fix Flider d Folder Image: Construction of the section Image: Construction of the section of the section of the section Image: Construction of the section of the se						64	ion 7.6	- Versio	rt System	dar Suppo	👜 Ra						FAA
IFolder Image: Point Fix Editor Ima	He														rt <u>T</u> ools	<u>File</u> Impo	
bar Point Fix Editor Point Fix Section Potential Point Fix Point Fix Section Potential Point Fix Point Files Point Portifiome/rssuser/rss/data/standard/point_fix/. Files Point Point Information, but not used in the end. Stephen Hawk provided me STARS maps downloaded from Falcon which provided better visualization. Keeping this information	Redisplay			Flight Path Editor		CDE		ASR8	ASR11	ARSR 1/2	ARSR4	ASDE-X	ASAT	DataLink	BSAT	RSAT	
bar File Database Source Unit Selection ♦ Stand Alone ♦ Networked ♦ meters ♦ feet Terrain Files NOTE: Important information, but not used in the end. Stephen Hawk provided me STARS maps downloaded from Falcon which provided better visualization. Keeping this information																	Folder
Database Source Unit Selection Stand Alone Interview Import from ASCII File Stand Alone Interview Import from ASCII File Terrain Files Import from ASCII File NOTE: Important information, but not used in the end. Stephen Hawk provided me STARS maps downloaded from Falcon which provided better visualization. Keeping this information Files										3		_	Fix Editor	× Point	_		9
Stand Alone Networked meters feet Stand Alone Networked meters feet Terrain Files NOTE: Important information, but not used in the end. Stephen Hawk provided me STARS maps downloaded from Falcon which provided better visualization. Keeping this information Files															•	Elle	bar
ger Terrain Files NOTE: Important information, but Important information, but not used in the end. Stephen Hawk Directories removided me STARS maps downloaded from Falcon which provided better visualization. Keeping this information Important information	X		_	n ASCII File	mport fror	x			7		ection	Unit Sele		e	atabase Sourc	Da	
ger NOTE: Important information, but not used in the end. Stephen Hawk provided me STARS maps downloaded from Falcon which provided better visualization. Keeping this information Directories Files									Filter		\diamond feet	\diamond meters	l	lietworked	Stand Alone	• :	
ger NOTE: Important information, but Important inform				d*.fixį́	dard/point_fix	s/data/stan	user/rss	home/rssu	/export/						Terrain Files		
ger not used in the end. Stephen Hawk /export/home/rssuser/rss/data/standard/point_fix/ mg provided me STARS maps downloaded /export/home/rssuser/rss/data/standard/point_fix/ from Falcon which provided better visualization. Keeping this information											+	ation bu	t inform	mnortan			
ing provided me STARS maps downloaded from Falcon which provided better visualization. Keeping this information	.fix ⊨	X_Waypoints	ksonville_JA											-			laer
from Falcon which provided better visualization. Keeping this information																	AT
										1			-				
for training purposes.										100	nation	nis inform					
										- C			oses.	ning purp	for train		
ates File Selected Selection								1	Selection	1					File Selected		ates
Jacksonville /export/home/rssuser/rss/data/standard/point_fix/Jacksonville_JAX_Waypoints.fix				«Jacksonville .	dard/point fix	s/data/stan	user/rss	home/rssu	/export/	Sec.					Jacksonville		1
iff		nts.fix	om_waypu														

20

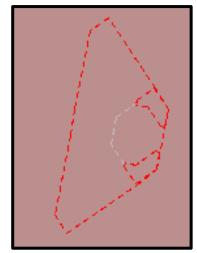

RSS BSAT Analysis – Initialization: Generate Point Fix Visibility Table

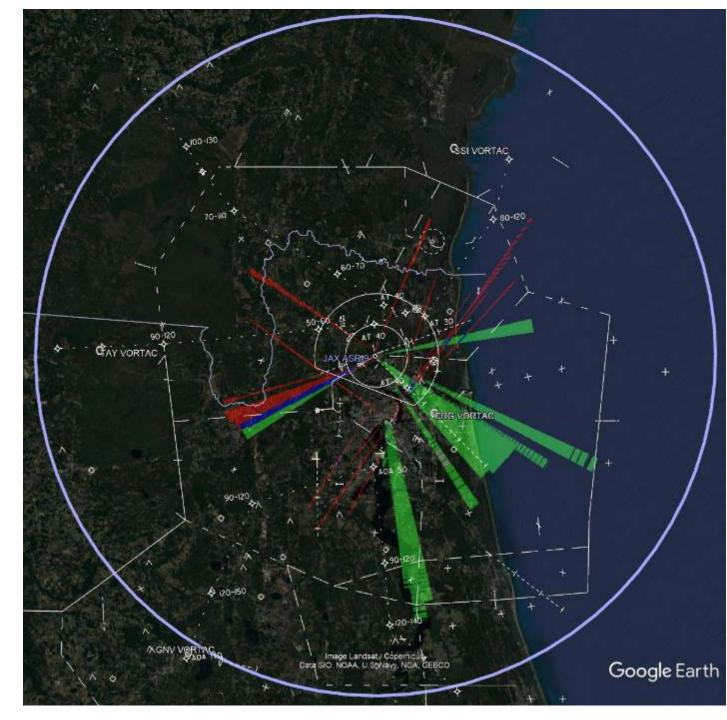
RADAR LOCATION DATA : LATITUDE (DEG MIN SEC) 30:29:35.97	JAX LONGITUDE (DEG MIN SEC) -81:41:33.6)		LEVATION (FT MSL) 92.3	A	NTENNA HT (FT) 63.6							RADAR LOCATION DATA : LATITUDE (DEG MIN SEC) 30:29:35.97	: JAX LONGITUDE (DEG MIN SEC - 81:41:33.6		LEVATION (FT MSL) 92.3	۵	ANTENNA HT (FT) 63.6					
FIX DATA :												FIX DATA :										
NO. NAME	LATITUDE (DEG MIN SEC)	LONGITUDE (DEG MIN SEC)	PNG (nmi)	AZ (DEG-TRUE)	ANGLE (DEG)	ANGLE (DEG)	REQ ALT (FT MSL)	ADJ ALT (FT MSL)	SCREEN ALT (FT MSL)	VISIBLE		ND. NAME	LATITUDE (DEG MIN SEC)	LONGITUDE (DEG MIN SEC)	RNG (nmi)	AZ (DEG-TRUE)	SCREEN ANGLE (DEG)	TARGET ANGLE (DEG)	REQ ALT (FT MSL)	ADJ ALT (FT MSL)	SCREEN ALT (FT MSL)	VISIBLE
1 08_UDAQI 2 08_IVTEF 3 08_TCH 4 26_YEJW0 5 26_WOQTA 6 26_ZALDU 7 26_TCH 8 14_00EQU 10 14_TCH 11 32_POTME 12 32_FIVOX 13 32_YUSKU 14 32_TCH 15 SSI_VORTC 17 CRG_VORTC 17 CRG_VORTC 18 GNV_VORTC 19 SSI 20 80K 21 4J1 22 09J 23 FHB 24 NFB 25 CRG 26 HEG 26 HEG 27 VQQ 28 SGJ 29 NIP 30 NEN 31 28J 32 4LCQ 34 AAMOS 35 ACCHE 36 ADLYN 37 ALCPN 38 ASTOR 39 BAAMF 40 BASSS 41 BERTT 42 BKENI 43 BOCAP 44 BRADO 45 BROLN 45 BROLN 46 BRSTL 47 BUNDE 48 CANDO 50 CARVL 51 CIPCU 51 CIPCU 52 CIRSA	30:23:28.95 30:20:10.80 30:16:40.03	-81:55:33.99 -81:48:13.87 -81:41:59.87 -81:27:40.43 -81:34:58.35 -81:37:54.54 -81:30:25.85 -81:46:31.54 -81:40:30.1 -81:52:25.85 -81:46:31.54 -81:40:56.13 -81:30:35.74 -81:40:56.13 -81:26:45.47 -81:26:45.47 -81:26:45.47 -81:26:45.47 -81:22:27.81 -81:22:27.81 -81:22:27.81 -81:22:40.30 -81:22:40.30 -81:22:40.30 -81:22:40.30 -81:22:40.30 -81:22:40.30 -81:22:40.30 -81:22:40.30 -81:22:40.30 -81:22:40.30 -81:22:40.30 -81:22:40.30 -81:22:40.30 -81:22:40.30 -81:22:40.30 -81:22:40.30 -81:22:40.30 -81:22:40.30 -81:22:40.30 -81:22:40.30 -81:22:21.40 -81:22:21.10 -81:54:30.20 -81:54:30.20 -81:41:22.21 -82:02:51.10 -81:54:30.20 -81:41:53.99 -81:41:53.99 -81:41:53.99 -81:41:53.99 -81:41:53.93 -81:24:20.99 -81:51.383 -81:24:20.99 -81:24:20.99 -81:24:20.99 -81:24:20.99 -81:24:20.99 -81:24:20.99 -81:24:20.99 -81:24:20.99 -81:24:20.99 -81:24:20.99 -81:24:20.99 -81:24:20.99 -81:24:20.99 -81:24:20.99 -81:24:20.99 -81:24:20.99 -81:24:20.99 -81:24:20.99 -81:24:20.99 -81:24:20.99 -81:24:20.99 -81:24:20.99 -81:24:20.99 -81:24:20.99 -81:24:20.99 -81:24:20.99 -81:24:20.99 -81:24:20.99 -81:24:20.99 -81:24:20.99 -81:24:20.99 -81:24:20.99 -81:24:20.99 -81:24:20.99 -81:24:20.99 -81:24:20.99 -81:24:20.99 -81:24:20.99 -81:24:20.99 -81:24:20.99 -81:24:20.99 -81:24:20.99 -81:24:20.99 -81:24:20.99 -81:24:20.99 -81:24:20.99 -81:24:20.99 -81:24:20.99 -81:24:20.99 -81:24:20.99 -81:24:20.99 -81:24:20.99 -81:24:20.99 -81:24:20.99 -81:24:20.99 -81:24:20.99 -81:24:20.99 -81:24:20.99 -81:24:20.99 -81:24:20.99 -81:24:20.99 -81:24:20.99 -81:24:20.99 -81:24:20.99 -81:24:20.99 -81:24:20.99 -81:24:20.99 -81:24:20.99 -81:24:20.99 -81:24:20.99 -81:24:20.99 -81:24:20.99 -81:24:20.99 -81:24:20.99 -81:24:20.99 -81:24:20.99 -81:24:20.99 -81:24:20.99 -81:24:20.99 -81:24:20.99 -81:24:20.99 -81:24:20.99 -81:24:20.99 -81:24:20.99 -81:24:20.99 -81:24:20.99 -81:24:20.99 -81:24:20.99 -81:24:20.99 -81:24:20.99 -81:24:20.99 -81:2	$\begin{array}{c} 12,74\\ 6,02\\ 0,42\\ 12,80\\ 12,06\\ 5,37\\ 12,80\\ 1,04\\ 12,06\\ 5,37\\ 12,80\\ 1,04\\ 13,48\\ 12,06\\ 5,37\\ 12,80\\ 1,11\\ 1,04\\ 35,69\\ 13,12\\ 44,59\\ 13,124\\ 747,27\\ 44,03\\ 13,91\\ 13,18\\ 14,101\\ 36,83\\ 15,55\\ 81\\ 14,94\\ 42,94\\ 44,51\\ 14,698\\ 32,92\\ 40,74\\ 55,58\\ 49,94\\ 60,88\\ 29,20\\ 60,88\\ 29,20\\ 60,88\\ 29,20\\ 60,88\\ 29,20\\ 60,88\\ 29,40\\ 91,49\\ 14,69\\ 12,40\\ 14,69\\ 12,40\\ 14,69\\ 12,40\\ 14,10\\ 12,40\\ 14,10\\ 12,40\\ 14,10\\ 12,40\\ 14,10\\ 12,40\\ 14,10\\ 12,40\\ 14,10\\ 12,40\\ 14,10\\ 14,10\\ 12,40\\ 14,10\\ 14,10\\ 12,40\\ 14,10\\ 14,10\\ 12,40\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,10\\ 14,$	251,84 253,30 294,60 69,85 67,85 58,43 308,98 307,03 220,66 132,00 133,62 136,60 134,23 135,60 134,23 155,40 21,49 144,25 21,49 144,25 21,49 145,58 21,41 59,33 1135,42 204,52 210,28 179,81 206,65 179,81 206,65 126,82 226,45 179,81 206,55 226,13 268,29 161,13 18,10 3149,49 211,29 160,49 211,29 161,13 18,10 3149,49 211,29 160,49 211,29 161,13 18,10 3149,49 211,29 164,79 164,79 164,79 164,79 169,49 211,29 169,19 161,13 18,10 3149,49 211,29 164,79 164,79 164,79 164,79 164,79 164,79 164,79 164,79 164,79 164,79 164,79 164,79 164,79 164,79 164,79 164,79 174,79 164,79 164,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,79 174,7	0.023 0.077 1.430 0.053 0.056 0.462 0.071 0.097 1.442 0.053 0.033 0.033 0.033 0.033 0.034 0.014 0.013 0.044 0.013 0.044 0.013 0.044 0.012 0.044 0.14 0.012 0.14 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.0155 0.044 0.155 0.022 0.036 0.022 0.036 0.024 0.053 0.022 0.036 0.022 0.036 0.022 0.036 0.022 0.036 0.022 0.036 0.022 0.036 0.022 0.036 0.022 0.036 0.022 0.036 0.022 0.036 0.022 0.036 0.022 0.036 0.022 0.036 0.022 0.036 0.022 0.036 0.022 0.028 0.043 0.009 0.011 0.088 0.023 0.028 0.029 0.028 0.029 0.029 0.029 0.029 0.029 0.029 0.022 0.020 0.022 0.020 0.022 0.020 0.022 0.020 0.022 0.020 0.022 0.022 0.028 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.000 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0	1.332 2.792 0.280 1.322 2.274 1.743 0.120 1.415 2.786 2.443 0.125 1.945 0.171 0.280 0.124 1.275 0.214 1.275 0.227 0.224 0.011 0.227 0.021 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.011 0.115 0.011 0.115 0.115 0.115 0.115 0.124 1.132 0.340 0.115 0.227 0.340 0.115 0.224 0.340 0.115 0.121 0.121 0.242 1.132 0.029 0.340 0.115 0.242 1.132 0.029 0.340 0.115 0.242 1.132 0.029 0.340 0.115 0.242 1.132 0.029 0.340 0.115 0.029 0.340 0.115 0.029 0.340 0.115 0.029 0.340 0.123 0.029 0.340 0.123 0.029 0.340 0.123 0.029 0.340 0.123 0.029 0.340 0.123 0.029 0.340 0.123 0.029 0.340 0.121 0.124 0.125 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.022 0.021 0.021 0.022 0.021 0.022 0.021 0.022 0.021 0.022 0.022 0.021 0.022 0.021 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.025 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.029 0.027 0.027 0.027 0.029 0.027 0.027 0.027 0.029 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.0270 0.0270 0.0270 0.0270000000000	2000. 1900. 2000. 1600. 740. 76. 2000. 1700. 1700. 741. 2000. 2000. 2000. 2000. 269. 276. 335. 261. 265. 265. 265. 265. 291. 336. 330. 265. 291. 336. 330. 269. 273. 347. 298. 445. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000.	not u prov from visua	ised in ided m Falcon alizatio	the en ne STAR n which	d. S S m I pro ping	55 CORYY 56 CLEDU 57 DRAFT 58 EJIPE 59 ENEME 60 FEMON 61 FETAL 62 GREYE 63 HABLE 64 HATMA 65 HOTAR 65 JAGGZ 67 JAWSS 68 JETSO 70 KIENS 70 KIE	30:27:28.15 29:41:55.42 30:25:14.32	- 82:22:46.33 - 81:36:13.39 - 82:25:18.24 82:18:50.00 - 82:26:09.31 - 81:23:36.20 - 82:30:24,76 - 82:18:20.00 - 82:06:09.96 - 80:39:15.73 - 81:06:45.73 - 81:06:45.71 - 81:06:45.70 - 82:02:00.00 - 81:49:33.78 - 81:25:149 - 82:02:00.00 - 81:49:33.78 - 81:22:18.28 - 82:21:25.76 - 81:53:16.94 - 82:22:45.62 - 81:22:18.28 - 82:245.62 - 81:22:18.28 - 82:09:52.08 - 82:09:52.08 - 82:09:52.08 - 82:09:52.08 - 82:09:52.08 - 82:09:52.08 - 82:09:52.08 - 82:09:52.08 - 81:12:51.29 - 81:07:20.74 - 81:25:52.86 - 81:12:34.75 - 81:25:52.86 - 81:12:51.20 - 81:07:20.74 - 81:25:52.86 - 81:12:34.72 - 81:45:59.13 - 01:45:15.10 - 80:58:01.40 - 81:08:45.46 - 82:04:32.725 - 81:25:24.93 - 81:06:45.46 - 82:04:32.77 - 81:25:24.93 - 81:14:00.03 - 81:19:49.40 - 81:24:08.32 - 81:14:00.03 - 81:19:49.40 - 81:24:08.32 - 81:14:07.77 - 82:23:30.65 - 81:21:37.75 - 81:25:22.40 - 81:14:07.77 - 82:23:30.65 - 82:15.20.77 - 82:23:30.55 - 82:15.20.77 - 82:23:30.	$\begin{array}{c} 40.52\\ 24.88\\ 53.41\\ 40.47\\ 15.65\\ 40.47\\ 15.65\\ 46.30\\ 25.64\\ 41.28\\ 25.89\\ 10.55\\ 8.98\\ 10.55\\ 8.98\\ 10.55\\ 19.55\\ 44.20\\ 47.53\\ 10.55\\ 19.52\\ 44.44\\ 45.203\\ 47.53\\ 10.55\\ 19.52\\ 41.45\\ 45.203\\ 30.38\\ 58.60\\ 30.38\\ 58.60\\ 37.91\\ 45.52\\ 41.45\\ 59.014\\ 30.99\\ 24.74\\ 8.552\\ 41.39\\ 25.50\\ 41.30\\ 25.50\\ 41.30\\ 25.52\\ 41.30\\ 22.55\\ 58.03\\ 47.57\\ 55.22\\ 41.30\\ 22.55\\ 58.03\\ 47.57\\ 55.22\\ 41.30\\ 22.55\\ 58.03\\ 47.57\\ 55.22\\ 41.30\\ 22.55\\ 58.03\\ 47.57\\ 55.22\\ 41.30\\ 22.55\\ 58.03\\ 47.57\\ 55.22\\ 41.30\\ 22.55\\ 58.03\\ 47.57\\ 55.22\\ 41.30\\ 22.55\\ 58.03\\ 41.30\\ 22.55\\ 58.03\\ 41.30\\ 22.55\\ 58.03\\ 41.30\\ 22.55\\ 58.03\\ 41.30\\ 22.55\\ 58.03\\ 41.30\\ 22.55\\ 58.03\\ 41.30\\ 22.55\\ 58.03\\ 41.30\\ 22.55\\ 58.03\\ 41.30\\ 22.55\\ 58.03\\ 41.30\\ 22.55\\ 58.03\\ 41.30\\ 22.55\\ 58.03\\ 41.30\\ 22.55\\ 58.03\\ 41.30\\ 22.55\\ 58.03\\ 41.30\\ 22.55\\ 58.03\\ 41.30\\ 22.55\\ 58.03\\ 41.30\\ 22.55\\ 58.03\\ 41.30\\ 22.55\\ 58.03\\ 41.30\\ 22.55\\ 58.03\\ 41.30\\ 22.55\\ 58.03\\ 41.30\\ 22.55\\ 58.03\\ 41.30\\ 22.55\\ 58.03\\ 41.30\\ 22.55\\ 58.03\\ 41.30\\ 22.55\\ 58.03\\ 41.30\\ 22.55\\ 58.03\\ 41.30\\ 22.55\\ 58.03\\ 41.30\\ 22.55\\ 58.03\\ 41.30\\ 22.55\\ 58.03\\ 41.30\\ 22.55\\ 58.03\\ 41.30\\ 22.55\\ 58.03\\ 41.30\\ 22.55\\ 58.03\\ 41.30\\ 22.55\\ 58.03\\ 41.30\\ 58.05\\ 58.03\\ 41.30\\ 58.05\\ 58.03\\ 41.30\\ 58.05\\ 58.03\\ 41.30\\ 58.05\\ 58.03\\ 41.30\\ 58.05\\ 58.03\\ 41.30\\ 58.05\\ 58.03\\ 41.30\\ 58.05\\ 58.03\\ 41.30\\ 58.05\\ 58.05\\ 58.05\\ 58.05\\ 58.05\\ 58.05\\ 58.05\\ 58.05\\ 58.05\\ 58.05\\ 58.05\\ 58.05\\ 58.05\\ 58.05\\ 58.05\\ 58.05\\ 58.05\\ 58.05\\ 58.05\\ 58.05\\ 58.05\\ 58.05\\ 58.05\\ 58.05\\ 58.05\\ 58.05\\ 58.05\\ 58.05\\ 58.05\\ 58.05\\ 58.05\\ 58.05\\ 58.05\\ 58.05\\ 58.05\\ 58.05\\ 58.05\\ 58.05\\ 58.05\\ 58.05\\ 58.05\\ 58.05\\ 58.05\\ 58.05\\ 58.05\\ 58.05\\ 58.05\\ 58.05\\ 58.05\\ 58.05\\ 58.05\\ 58.05\\ 58.05\\ 58.05\\ 58.05\\ 58.05\\ 58.05\\ 58.05\\ 58.05\\ 58.05\\ 58.05\\ 58.05\\ 58.05\\ 58.05\\ 58.05\\ 58.05\\ 58.05\\ 58.05\\ 58.05\\ 58.05\\ 58.05\\ 58.05\\ 58.05\\ 58.05\\ 58.05\\ 58.05\\ 58.05\\ 58.05\\ 58.05\\ 58.05\\ 58.05\\ 58.05\\ 58.05\\ 58.05\\ 58.05\\ 58.05\\ 58.05\\ 58.05\\ 58.05\\ 58.05\\ 58.05\\ 58.05\\ 58.05\\ 58.05\\ 58.05\\ 58.05\\ 58.05\\ 58.05\\ 58.05\\ 58.05\\ 58.05\\ 5$	241.77 10.63 225.37 316.53 288.28 97.52 246.58 284.10 337.74 79.38 73.58 120.54 93.15 139.09 135.34 252.10 57.90 271.89 163.97 267.67 164.89 260.04 265.72 151.98 260.04 265.72 151.98 166.51 166.51 166.51 166.51 166.51 166.51 166.51 166.51 166.51 166.51 166.51 166.51 166.51 166.51 166.51 166.51 166.51 166.51 166.51 166.51 166.51 166.51 166.51 166.51 166.51 166.55 77.88 324.66 114.54 145.58 124.66 114.55 148.02 235.57 27.88 154.14 97.45 165.22 21.05 7 22.06 7 23.55 7 23.56 148.02 23.55 7 27.88 154.14 94.01 220.02 23.55 7 27.88 154.14 97.45 165.22 21.05 7 27.88 23.60 94.01 220.02 23.55 7 27.88 154.14 97.45 165.22 23.60 23.57 23.60 23.57 23.60 23.57 23.60 23.57 23.60 23.57 23.60 23.57 23.60 23.57 23.58 23.60 23.57 23.57 23.58 23.60 23.57 23.57 23.58 23.59 24.66 114.54 23.56 23.57 23.57 23.57 24.65 145.57 23.57 24.65 145.57 24.65 145.57 24.65 145.57 25.78 23.59 24.66 145.57 23.57 24.65 145.57 24.65 145.57 24.65 145.57 24.65 145.57 25.57 27.88 23.56 23.57 27.88 23.57 27.88 23.57 27.88 23.57 27.88 23.57 27.88 23.57 27.88 23.57 27.88 23.57 27.88 23.57 27.88 23.57 27.88 23.57 27.88 23.57 27.88 23.57 27.88 23.57 27.88 23.57 27.88 23.57 27.88 23.57 27.88 23.57 27.88 23.57 27.88 23.57 27.88 23.57 27.88 23.57 27.88 23.57 27.88 23.57 27.88 23.57 27.88 23.57 27.88 23.57 27.88 23.57 27.88 23.57 27.88 23.57 27.88 23.57 27.88 23.57 27.88 23.57 27.88 23.57 27.88 23.57 27.88 23.57 27.88 23.57 27.88 23.57 27.88 23.57 27.88 23.57 27.88 23.57 27.88 23.57 27.88 23.57 27.88 23.57 27.88 23.57 27.88 23.57 27.88 23.57 27.88 23.57 27.88	- 0.052 0.018 - 0.025 - 0.008 - 0.079 - 0.022 - 0.006 - 0.019 - 0.057 - 0.004 - 0.057 - 0.004 - 0.057 - 0.004 - 0.077 - 0.077 - 0.077 - 0.027 - 0.057 - 0.044 - 0.077 - 0.057 - 0.044 - 0.077 - 0.044 - 0.057 - 0.044 - 0.042 - 0.042 - 0.042 - 0.044 - 0.044 - 0.042 - 0.044 - 0.045 - 0.048 - 0.051 - 0.048 - 0.051 - 0.048 - 0.046 - 0.048 - 0.046 - 0.048 - 0.047 - 0.054 - 0.049 - 0.057 - 0.048 - 0.048 - 0.046 - 0.046 - 0.049 - 0.057 - 0.057 - 0.049 - 0.049 - 0.048 - 0.051 - 0.048 - 0.041 - 0.048 - 0.045 - 0.048 - 0.067 - 0.051 - 0.048 - 0.051 - 0.064 - 0.051 - 0.054 - 0.051 - 0.054 - 0.051 - 0.054 - 0.051 - 0.054 - 0.051 - 0.054 - 0.051 - 0.051 - 0.054 - 0.051 - 0.051 - 0.054 - 0.051 - 0.054 - 0.051 - 0.051 - 0.051 - 0.057 - 0.051 - 0.054 - 0.051 - 0.052 - 0.052 - 0.052 - 0.052 - 0.052 - 0.052 - 0.052 - 0.052 - 0.055 - 0.0	0.190 0.566 0.002 0.995 0.191 1.050 0.101 0.345 -0.025 -0.014 0.378 0.534 0.088 0.100 -0.033 -0.065 3.015 0.479 1.622 0.794 0.129 0.114 0.057 0.568 0.860 0.020 0.005 0.401 0.401 0.567 0.246 0.265 -0.060 0.245 -0.060 0.226 0.245 -0.060 0.226 0.245 -0.060 0.226 0.265 0.407 0.246 0.265 0.407 0.246 0.265 0.407 0.246 0.265 0.407 0.246 0.265 0.060 0.022 0.022 0.226 0.040 0.060 0.0657 0.401 0.577 0.246 0.265 0.401 0.265 0.405 0.265 0.405 0.265 0.405 0.265 0.405 0.265 0.405 0.265 0.265 0.405 0.265 0.405 0.265 0.401 0.265 0.405 0.265 0.405 0.265 0.405 0.265 0.405 0.265 0.405 0.265 0.265 0.407 0.246 0.265 0.060 0.265 0.065 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.272 0.330 0.024 0.275 0.175 0.175 0.155	2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000,	1642. 1780. 1528. 1642. 1892. 1711. 1508. 1517. 1723. 1772. 1585. 1592. 1502. 1478. 1948. 1956. 1827. 1609. 1609. 1609. 1565. 1780. 1565. 1780. 1565. 1780. 1530. 1531. 1731. 1751. 1669. 1655. 1572. 1482. 1482. 1482. 1482. 1571. 1575. 1669. 1678. 1571. 1731. 1751. 1669. 1655. 1572. 1482. 1585. 1572. 1482. 1585. 1572. 1482. 1585. 1574. 1575. 1689. 1678. 1575. 1585. 1576. 1780. 1530. 1571. 1775. 1669. 1678. 1572. 1585. 1572. 1585. 1572. 1585. 1585. 1575. 1585. 1575. 1585. 1575. 1585. 1576. 1576. 1580. 1580. 1580. 1580. 1576. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 1580. 15	962, 552, 1846, 1476, 736, 1809, 2200, 1476, 736, 556, 522, 1582, 1631, 2541, 1883, 67, 193, 292, 1126, 1396, 1270, 1450, 364, 684, 684, 684, 684, 684, 684, 684, 125, 3013, 1739, 1676, 1829, 1676, 1829, 1676, 1829, 1676, 1829, 1676, 1829, 1676, 1829, 1676, 1829, 1676, 1829, 1676, 1829, 1676, 1829, 1676, 1829, 1676, 1829, 1676, 1829, 1676, 1829, 1676, 1829, 1676, 1829, 1676, 1829, 1676, 1829, 1676, 1829, 1676, 1829, 1676, 1829, 1676, 1829, 1676, 1829, 1676, 1829, 1676, 1829, 1676, 1829, 1676, 1829, 1676, 1829, 1676, 1829, 1676, 1829, 1676, 1829, 1676, 1829, 1676, 1829, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1820, 1	A LES UN A LES SES DE LES SES DE LES SES SES SES SES DE LES SES DE
53 COBOK 54 CORDE	29:48:30.53 30:31:22.29	-81:06:45.71 -82:21:11.77	50.87 34.27	143.50 273.12	-0.013	0.034 0.310	2000.	1550. 1697.	1744. 668.	MARG YES		108 WIWHE	31:03:11.97	-82:33:19.57	55.76	307.15	-0.097	-0.027	2000.	1507.	1586.	MARG


Terminal B Expansion Building

RSS BSAT Analysis Range Azimuth False Target Plots

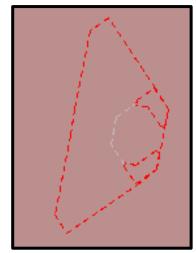
RSS BSAT Analysis: 60 NM Range 50 to 250 FT MSL


No RCS/CDE Only

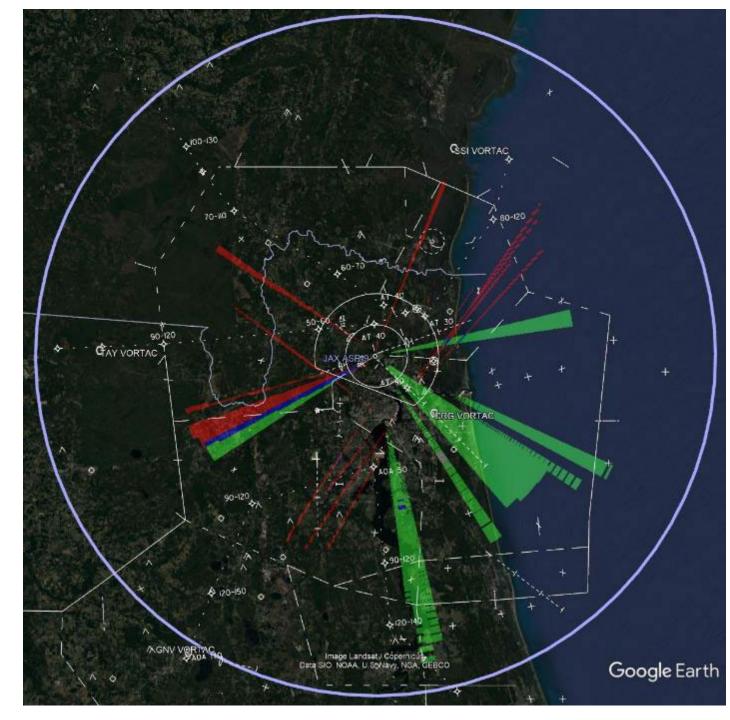

Position Name: JAX ASR9/Mode S Latitude: 30:29:35.97 Longitude: -81:41:33.61 Beacon Height MSL: 92.3 FT Beacon Height AGL: 63.6 FT

	L	EGEND
	Mode Cl Inline Re Inline Sc False Ta	
INTERROGAT(Peak Transm Receiver Ba Receiver No Minimum De Elevation Pa Elevation Pa Elevation Til Ant. Rotation Pulse Lengti Vertical Pola STC Expone STC Depth STC Range : TRANSPONDE Peak Transm Receiver Ba Minimum Tri Reply Pulse Receiver Lo Receiver No	ntt Power ndwidth stem Loss ise Figure tectable Signa ttern ATCRB t Angle n Rate n Rate n arization nt Step ER PARAMETE nt Power ndwidth gger Level width ss	200.0 (W) 9.0 (MHz) 9.5 (dB) 7.9 (dB) J -80.0 (dBm) (S_open_array 0.0 (deg) 12.5 (rpm) 0.80 (usec) 2.0 36.0 (dB) 1.0 (nmi)

RSS BSAT Analysis: 60 NM Range 250 to 500 FT MSL

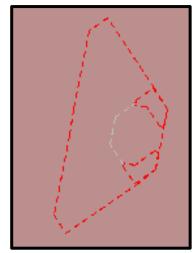


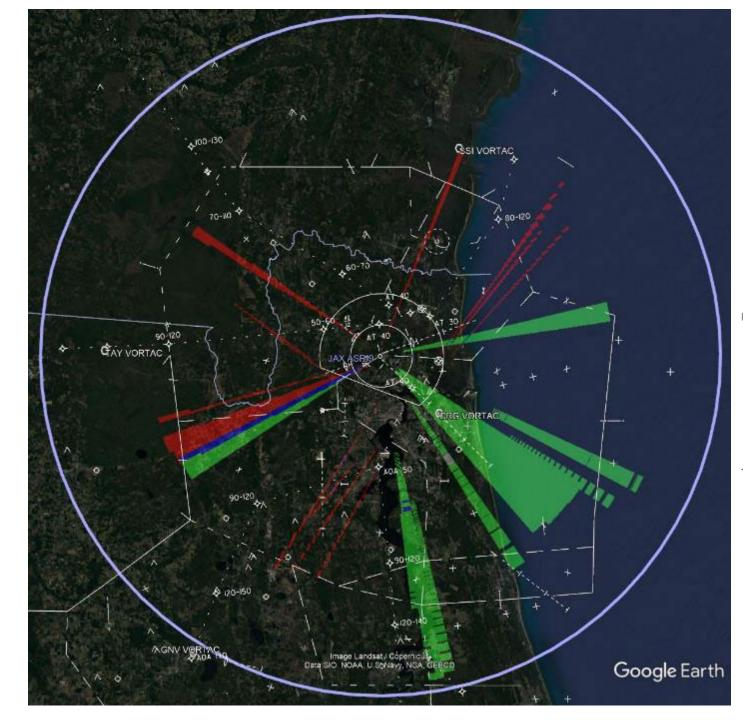
No RCS/CDE Only



Position Name: JAX ASR9/Mode S Latitude: 30:29:35.97 Longitude: -81:41:33.61 Beacon Height MSL: 92.3 FT Beacon Height AGL: 63.6 FT

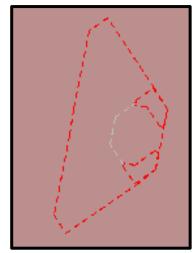
RSS BSAT Analysis: 60 NM Range 500 to 750 FT MSL

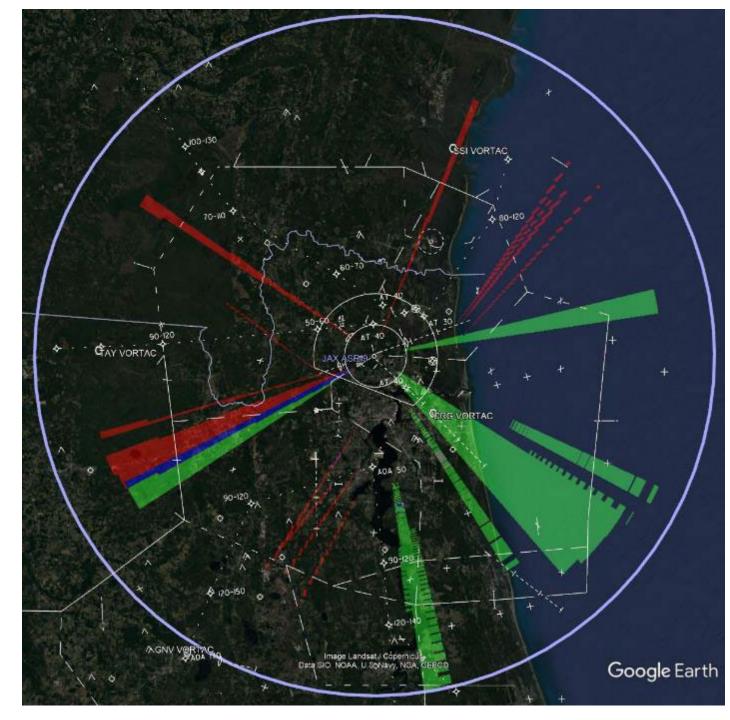

No RCS/CDE Only


Position Name: JAX ASR9/Mode S Latitude: 30:29:35.97 Longitude: -81:41:33.61 Beacon Height MSL: 92.3 FT Beacon Height AGL: 63.6 FT

	LE	GEND
	Mode Ch Inline Ret Inline Sou False Tar	
Peak Transm Receiver Ba Receiver So Minimum De Elevation Pa Elevation Til Ant. Rotation Pulse Length Vertical Pola STC Expone STC Depth STC Range	ndwidth stem Loss ise Figure tectable Signal ttern ATCRBS t Angle Rate natization nt Step ER PARAMETE it Power ndwidth gger Level Width ss	200.0 (W) 9.0 (MHz) 9.5 (dB) -80.0 (dBm) 5-open_array 0.0 (deg) 12.5 (rpm) 0.80 (usec) 2.0 36.0 (dB) 1.0 (nmi)

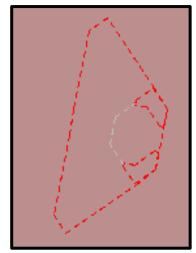
RSS BSAT Analysis: 60 NM Range 750 to 1K FT MSL

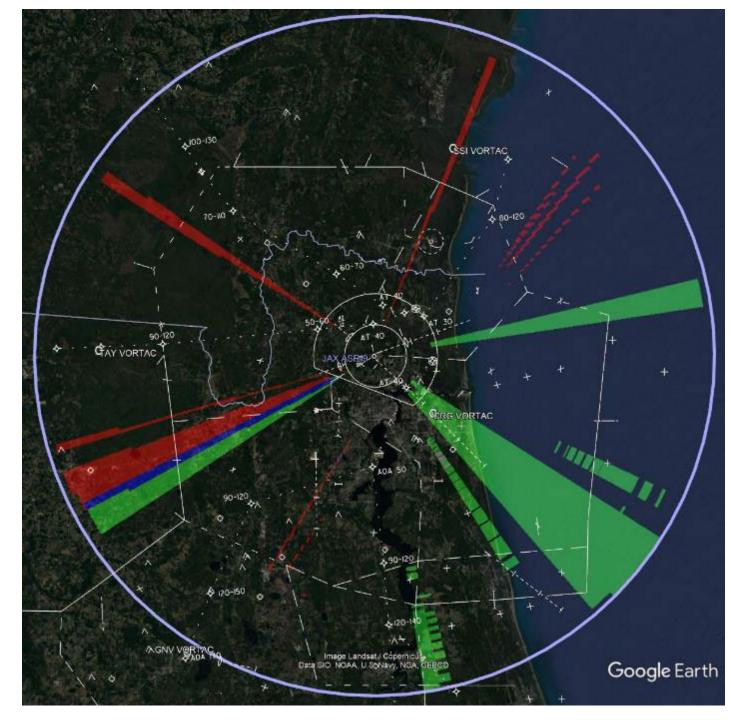

No RCS/CDE Only


Position Name: JAX ASR9/Mode S Latitude: 30:29:35.97 Longitude: -81:41:33.61 Beacon Height MSL: 92.3 FT Beacon Height AGL: 63.6 FT

LEGEND Multiple Mode Change Return Mode Change Source Inline Return Inline Source False Target Return False Target Source	
Mode Change Return Mode Change Source Inline Return Inline Source False Target Return	
TERROGATOR PARAMETERS Peak Transmit Power 200.0 (W) Receiver Bandwidth 9.0 (MHz) Receiver System Loss 9.5 (dB) Receiver Noise Figure 7.9 (dB) Minimum Detectable Signal -80.0 (dBm) Elevation Pattern ATCRBS_open_array Elevation Tilt Angle 0.0 (deg) Ant. Rotation Rate 12.5 (rpm) Pulse Length 0.80 (usec) Vertical Polarization STC Exponent STC Range Step 1.0 (nmi) ANSPONDER PARAMETERS Peak Transmit Power Peak Transmit Power 250.0 (W) Receiver Bandwidth 15.0 (MHz) Minimum Trigger Level -69.0 (dBm) Reply Pulse Width 0.45 (usec) Receiver Loss 4.0 (dB)	

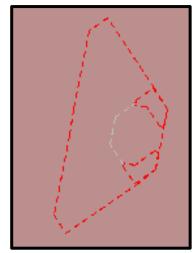
RSS BSAT Analysis: 60 NM Range 1K to 1500 FT MSL

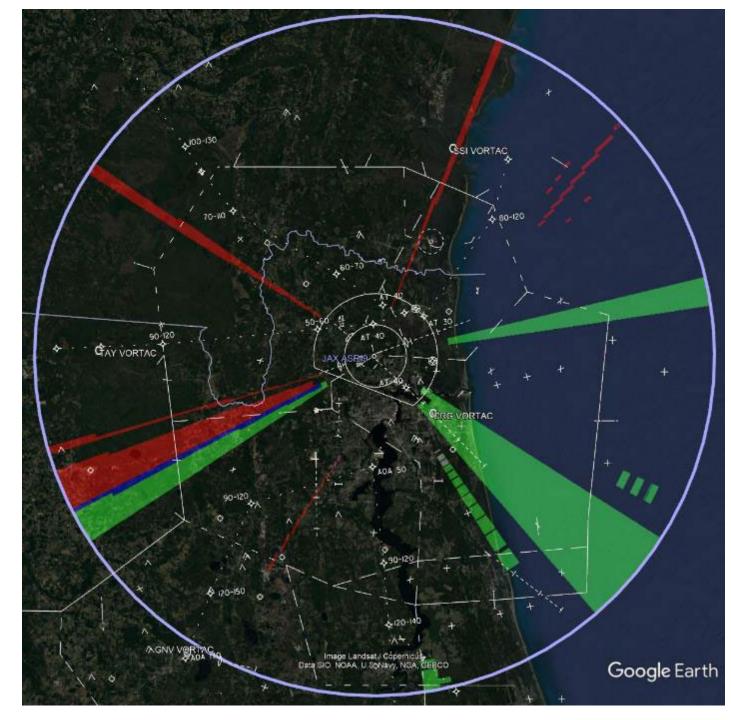

No RCS/CDE Only


Position Name: JAX ASR9/Mode S Latitude: 30:29:35.97 Longitude: -81:41:33.61 Beacon Height MSL: 92.3 FT Beacon Height AGL: 63.6 FT

LEGEND Multiple Mode Change Return Mode Change Source Inline Return Inline Return False Target Return False Target Return False Target Source TERROGATOR PARAMETERS Peak Transmit Power 200.0 (W) Receiver Bandwidth 9.0 (MHz) Receiver System Loss 9.5 (dB) Minimum Detectable Signal -80.0 (dBm) Elevation Pattern ATCRBS_open_array Elevation Pattern ATCRBS_open_array Elevation Pattern ATCRBS_open_array Elevation Rate 12.5 (rpm) Pulse Length 0.80 (usec) Vertical Polarization STC Exponent 2.0 STC Range Step 1.0 (nmi) ANSPONDER PARAMETERS Peak Transmit Power 250.0 (W)
Mode Change Return Mode Change Source Inline Return Inline Source False Target Return False Target Source TERROGATOR PARAMETERS Peak Transmit Power 200.0 (W) Receiver Bandwidth 9.0 (MHz) Receiver Bandwidth 9.0 (MHz) Receiver System Loss 9.5 (dB) Receiver Noise Figure 7.9 (dB) Minimum Detectable Signal -80.0 (dBm) Elevation Pattern ATCRBS_open_array Elevation Pattern ATCRBS_open_array Elevation Pattern ATCRBS_open_array Elevation Pattern ATCRBS_open_array Elevation Pattern ATCRBS_open_array Elevation Tilt Angle 0.0 (deg) Ant. Rotation Rate 12.5 (rpm) Pulse Length 0.80 (usec) Vertical Polarization STC Exponent 2.0 STC Depth 36.0 (dB) STC Range Step 1.0 (nmi) ANSPONDER PARAMETERS Peak Transmit Power 250.0 (W)
Peak Transmit Power 200.0 (W) Receiver Bandwidth 9.0 (MHz) Receiver System Loss 9.5 (dB) Receiver Noise Figure 7.9 (dB) Minimum Detectable Signal -80.0 (dBm) Elevation Pattern ATCRBS_open_array Elevation Tilt Angle 0.0 (deg) Ant. Rotation Rate 12.5 (rpm) Pulse Length 0.80 (usec) Vertical Polarization 2.0 STC Exponent 2.0 STC Depth 36.0 (dB) STC Range Step 1.0 (nmi) ANSPONDER PARAMETERS 250.0 (W)
Receiver Bandwidth 15.0 (MHz) Minimum Trigger Level -69.0 (dBm) Reply Pulse Width 0.45 (usec) Receiver Loss 4.0 (dB) Receiver Noise Figure 7.9 (dB)

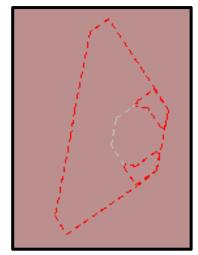
RSS BSAT Analysis: 60 NM Range 1500 to 2K FT MSL

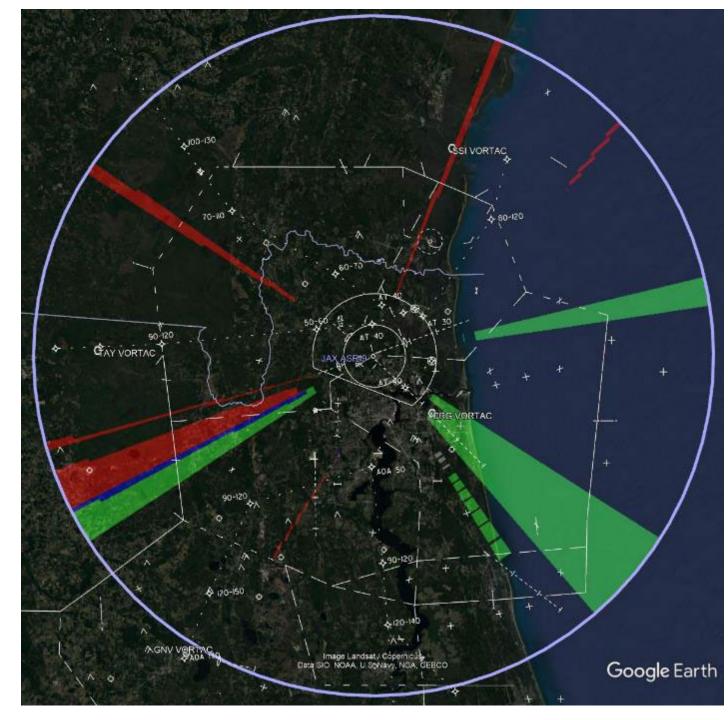

No RCS/CDE Only


Position Name: JAX ASR9/Mode S Latitude: 30:29:35.97 Longitude: -81:41:33.61 Beacon Height MSL: 92.3 FT Beacon Height AGL: 63.6 FT

		LEGEND	
	Mode Inline Inline False	le Change Retum Change Source Retum Source Target Retum Target Source	
TERROGAT(Peak Transm Receiver No Receiver No Minimum De Elevation Pa Elevation Pa Elevation Pa Elevation Pa Context Pulse Length STC Expone STC Depth STC Range : (ANSPONDE Peak Transm Receiver Ba	it Power ndwidth stem Loss ise Figure tectable Sig ttern ATCI t Angle Rate Rate Rate Step Step R PARAME	200.0 (W) 9.0 (MHz) 9.5 (dB) 7.9 (dB) nal -80.0 (dBm) RBS_open_array 0.0 (deg) 12.5 (rpm) 0.80 (usec) 2.0 36.0 (dB) 1.0 (nmi)	
Minimum Tri Reply Pulse Receiver Lo Receiver No	gger Level Width ss	-69.0 (dBm) 0.45 (usec) 4.0 (dB) 7.9 (dB)	

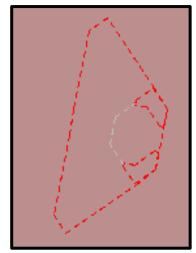
RSS BSAT Analysis: 60 NM Range 2K to 2500 FT MSL

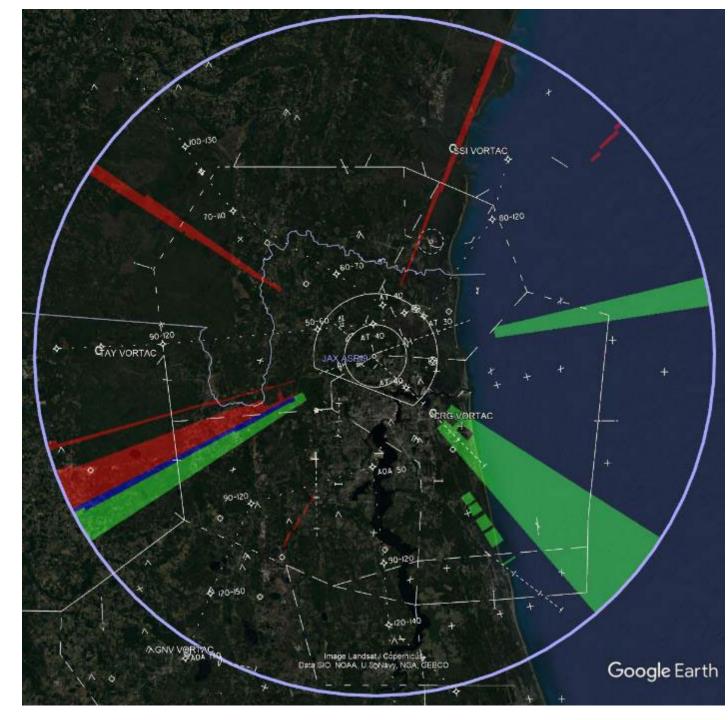

No RCS/CDE Only


Position Name: JAX ASR9/Mode S Latitude: 30:29:35.97 Longitude: -81:41:33.61 Beacon Height MSL: 92.3 FT Beacon Height AGL: 63.6 FT

Γ		LEGEND		
	Mode Inline Inline False	ole Change Retum Change Source Retum Source Target Retum Target Source		
TERROGATOR PARAMETERS Peak Transmit Power 200.0 (W)				
Receiver Ban		9.0 (MHz)		
Receiver Syst	tem Loss	9.5 (dB)		
Receiver Nois	se Figure	7.9 (dB)		
Minimum Dete				
		RBS_open_array		
Elevation Tilt		0.0 (deg)		
Ant. Rotation Pulse Length	Nate	12.5 (rpm) 0.80 (usec)		
Vertical Polar	ization	0.00 (usec)		
STC Exponen	t	2.0		
STC Depth		36.0 (dB)		
STC Range S	tep	1.0 (nmi)		
ANSPONDER				
Peak Transmi		250.0 (W)		
Receiver Ban		15.0 (MHz)		
Minimum Trigg		-69.0 (dBm)		
Reply Pulse ¥ Receiver Los:	YIGIN	0.45 (usec)		
Receiver Los: Receiver Noi:		4.0 (dB) 7.9 (dB)		
100011011401	in a la serie de l	7.0 (0D)		

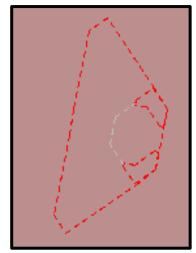
RSS BSAT Analysis: 60 NM Range 2500 to 3K FT MSL


No RCS/CDE Only

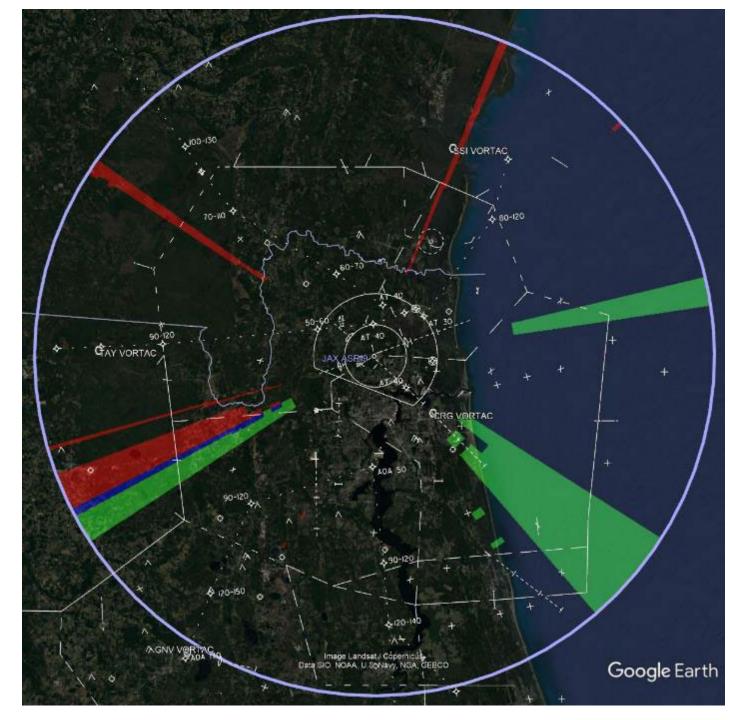

Position Name: JAX ASR9/Mode S Latitude: 30:29:35.97 Longitude: -81:41:33.61 Beacon Height MSL: 92.3 FT Beacon Height AGL: 63.6 FT

		LEG	iEND	
	M M Ini Fa	ode Cha line Retu line Sour alse Targ		
TERROGATO	DR PAR	AMETER	RS	
Peak Transm	it Powe	r	200.0 (W)	
Receiver Ba	ndwidth		9.0 (MHz)	
Receiver Sy:			9.5 (dB)	
Receiver Noise Figure 7.9 (dB)			7.9 (dB)	
Minimum Det	ectable	Signal	-80.0 (dBm)	
Elevation Pa		ATCRBS		
Elevation Tilt			0.0 (deg)	
Ant. Rotation			12.5 (rpm)	
Pulse Length Vertical Pola			0.80 (usec)	
STC Expone			2.0	
STC Depth			36.0 (dB)	
STC Range 3	Step		1.0 (nmi)	
ANSPONDE		AMETER	S	
Peak Transm			250.0 (W)	
Receiver Bar			15.0 (MHz)	
Minimum Trig	ger Lev	vel	-69.0 (dBm)	
Reply Pulse	₩idth		0.45 (usec)	
Receiver Los			4.0 (dB)	
Receiver No	ise Figu	ire	7.9 (dB)	

RSS BSAT Analysis: 60 NM Range 3K to 3500 FT MSL



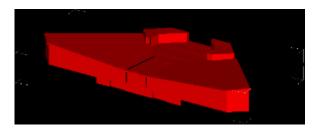
No RCS/CDE Only



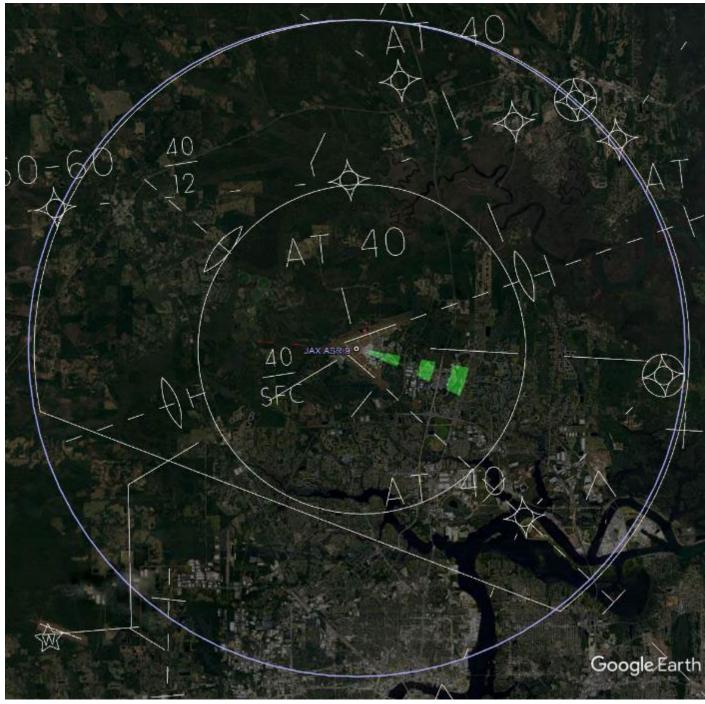
		LEGEND
	Mode Inline Inline False	le Change Retum Change Source Retum Source Target Retum Target Source
TERROGATOR Peak Transmit P		ETERS 200.0 (W)
Receiver Bandy		9.0 (MHz)
Receiver Syster		9.5 (dB)
Receiver Noise		7.9 (dB)
Minimum Detect		
		RBS_open_array
Elevation Tilt Ar	ngle	0.0 (deg)
Ant. Rotation Ra	te	12.5 (rpm)
Pulse Length		0.80 (usec)
Vertical Polariza	ation	
STC Exponent		2.0
STC Depth		36.0 (dB)
STC Range Ste		1.0 (nmi)
ANSPONDER F		
Peak Transmit P Receiver Bandv		250.0 (W)
Minimum Trigge		15.0 (MHz) -69.0 (dBm)
Reply Pulse Wid		0.45 (usec)
Receiver Loss	201	4.0 (dB)
Receiver Noise	Figure	7.9 (dB)

RSS BSAT Analysis: 60 NM Range 3500 to 4K FT MSL

No RCS/CDE Only

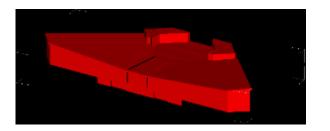


Position Name: JAX ASR9/Mode S Latitude: 30:29:35.97 Longitude: -81:41:33.61 Beacon Height MSL: 92.3 FT Beacon Height AGL: 63.6 FT

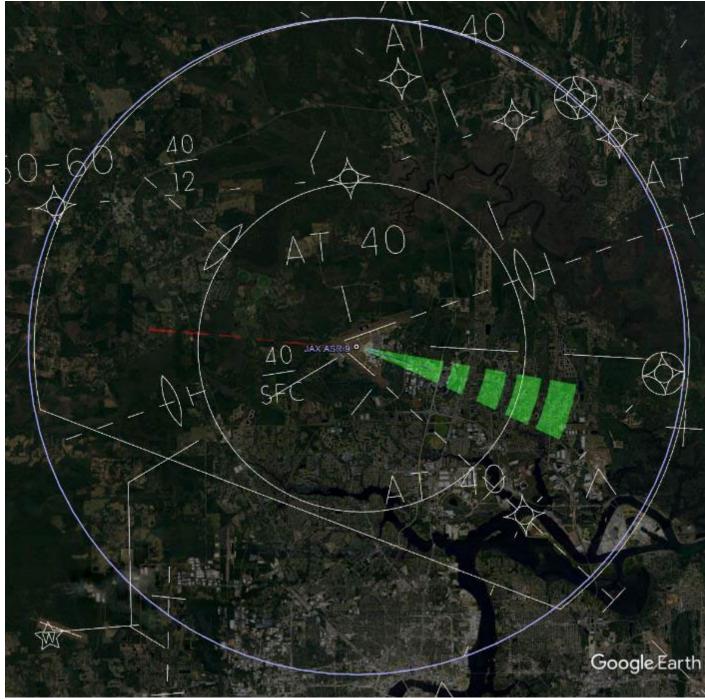

INT

		LEGEND
	Mode Inline Inline False	le Change Retum Change Source Retum Source Target Retum Target Source
Elevation Till Ant. Rotation Pulse Length /ertical Pola STC Expone STC Depth STC Range ANSPONDE Peak Transm	DR PARAM it Power ndwidth stem Loss ise Figure tectable Sig ttem ATC t Angle Rate rization nt Step R PARAMI it Power	ETERS 200.0 (W) 9.0 (MHz) 9.5 (dB) 7.9 (dB) r.9 (dBm) RBS_open_array 0.0 (deg) 12.5 (rpm) 0.80 (usec) 2.0 36.0 (dB) 1.0 (nmi) ETERS 250.0 (W)
Receiver Ba Minimum Trig Reply Pulse Receiver Los Receiver No	gger Level Width ss	15.0 (MHz) -69.0 (dBm) 0.45 (usec) 4.0 (dB) 7.9 (dB)

RSS BSAT Analysis: 10 NM Range 50 to 250 FT MSL

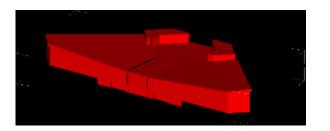


JAX-CONC_sh_o.rcs Terminal B Expansion Building Only ORIGINAL – NO TILT

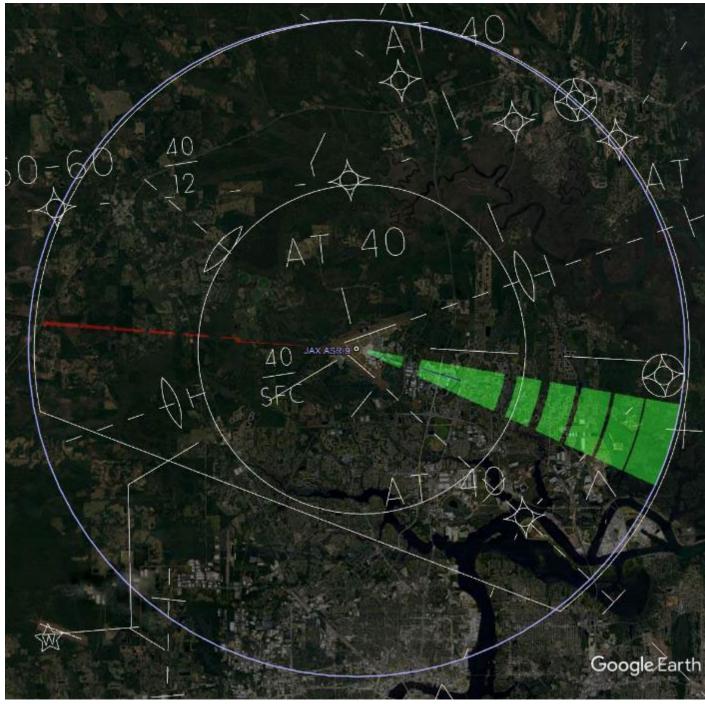


L	EGEND
Multiple Mode C Mode C Inline Re Inline So False Ta	hange Return hange Source sturn
INTERROGATOR PARAMET	
Peak Transmit Power	200.0 (W)
Receiver Bandwidth	9.0 (MHz)
Receiver System Loss	9.5 (dB)
Receiver Noise Figure	7.9 (dB)
Minimum Detectable Signa	d80.0 (dBm)
Elevation Pattern ATCRE	
Elevation Tilt Angle	0.0 (deg)
Ant. Rotation Rate	12.5 (rpm)
Pulse Length	0.80 (usec)
Vertical Polarization	2.0
STC Exponent	2.0
STC Depth	36.0 (dB)
STC Range Step TRANSPONDER PARAMETI	1.0 (nmi)
Peak Transmit Power	250.0 (W)
Receiver Bandwidth	15.0 (MHz)
	-69.0 (dBm)
Minimum Trigger Level Reply Pulse Width	0.45 (usec)
Receiver Loss	
Receiver Noise Figure	4.0 (dB) 7.9 (dB)
necenter Noise Figure	1.0 (00)

RSS BSAT Analysis: 10 NM Range 250 to 500 FT MSL

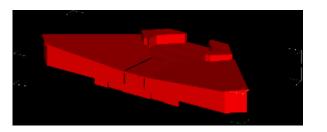


JAX-CONC_sh_o.rcs Terminal B Expansion Building Only ORIGINAL – NO TILT

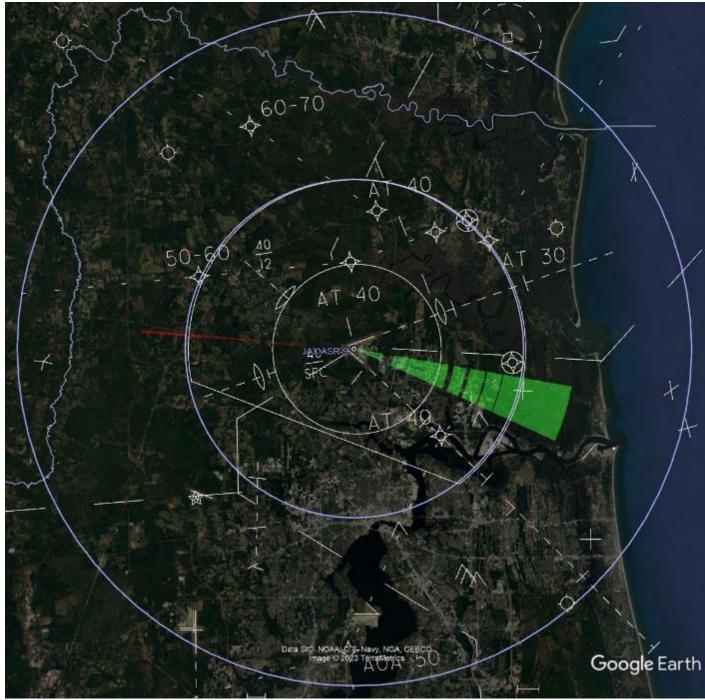


	LEGEND			
	Multiple Mode Change Return Mode Change Source Inline Return Inline Source False Target Return False Target Source			
INTERROGATOR PARAMETERS Peak Transmit Power 200.0 (W)				
Receiver Bandwi				
Receiver System				
Receiver Noise F	Figure 7.9 (dB)			
Minimum Detecta	able Signal -80.0 (dBm)			
	n ATCRBS_open_array			
Elevation Tilt An Ant. Rotation Rat				
Pulse Length	te 12.5 (rpm) 0.80 (usec)			
Vertical Polarizat				
STC Exponent	2.0			
STC Depth	36.0 (dB)			
STC Range Step	1.0 (nmi)			
TRANSPONDER P				
Peak Transmit Po	(,			
Receiver Bandwi				
Minimum Trigger Reply Pulse Widt				
Receiver Loss	4.0 (dB)			
Receiver Noise F				
	5			

RSS BSAT Analysis: 10 NM Range 500 to 750 FT MSL



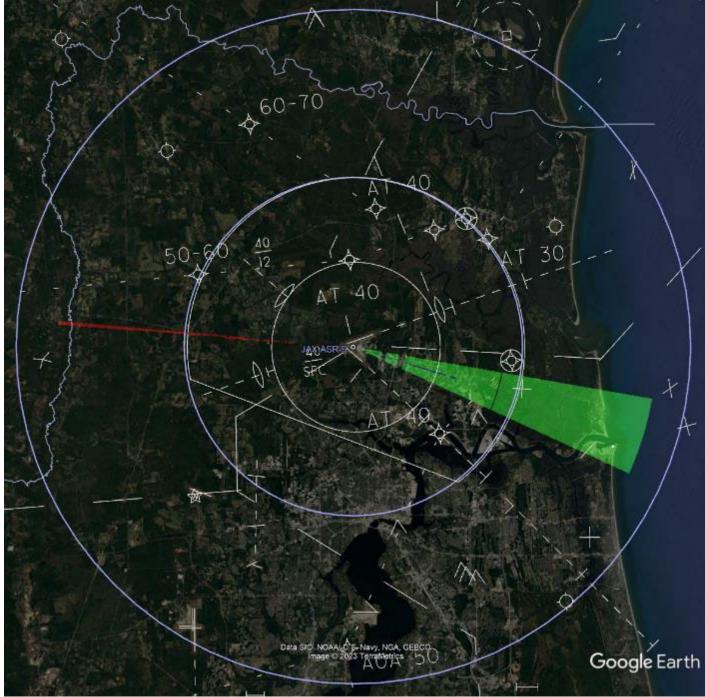
JAX-CONC_sh_o.rcs Terminal B Expansion Building Only ORIGINAL – NO TILT



	LEGEND
	Multiple Mode Change Retum Mode Change Source Inline Retum Inline Source False Target Retum False Target Source
INTERROGATOR P	
Peak Transmit Po	
Receiver Bandwi	
Receiver System	
Receiver Noise F	
Minimum Detecta	
	ATCRBS_open_array
Elevation Tilt Ang	
Ant. Rotation Rate	
Pulse Length Vertical Polarizat	0.80 (usec)
STC Exponent	2.0
STC Depth	36.0 (dB)
STC Range Step	
TRANSPONDER P	
Peak Transmit Po	
Receiver Bandwi	
Minimum Trigger	
Reply Pulse Widt	
Receiver Loss	4.0 (dB)
Receiver Noise F	

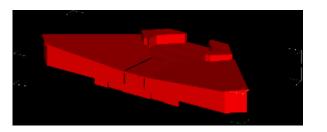
RSS BSAT Analysis: 20 NM Range 750 to 1K FT MSL

JAX-CONC_sh_o.rcs Terminal B Expansion Building Only ORIGINAL – NO TILT

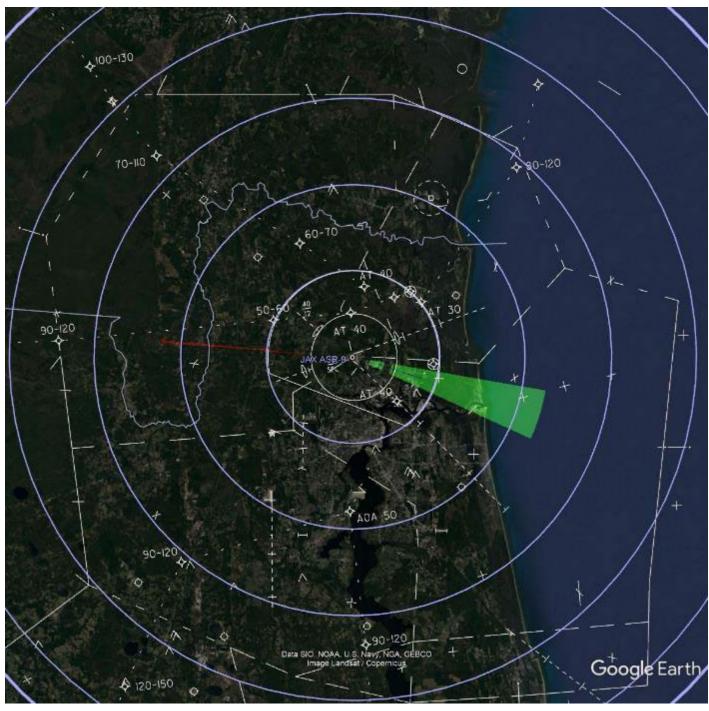


	LE	GEND		
	Mode Ch Inline Ret Inline Sou False Tar			
INTERROGATOR PARAMETERS Peak Transmit Power 200.0 (W) Receiver Bandwidth 9.0 (MHz) Receiver System Loss 9.5 (dB)				
Receiver Noise Minimum Detect Elevation Patten	Figure able Signal n ATCRBS	7.9 (dB) -80.0 (dBm) 5_open_array		
Elevation Tilt An Ant. Rotation Ra Pulse Length		0.0 (deg) 12.5 (rpm) 0.80 (usec)		
Vertical Polariza STC Exponent	tion	2.0		
STC Depth STC Range Step TRANSPONDER F		36.0 (dB) 1.0 (nmi) RS		
Peak Transmit P Receiver Bandw	ower /idth	250.0 (W) 15.0 (MHz)		
Minimum Trigger Reply Pulse Wid Receiver Loss		-69.0 (dBm) 0.45 (usec)		
Receiver Loss	Figure	4.0 (dB) 7.9 (dB)		

RSS BSAT Analysis: 20 NM Range 1K to 1500 FT MSL

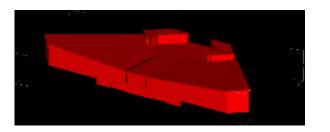


JAX-CONC_sh_o.rcs Terminal B Expansion Building Only ORIGINAL – NO TILT

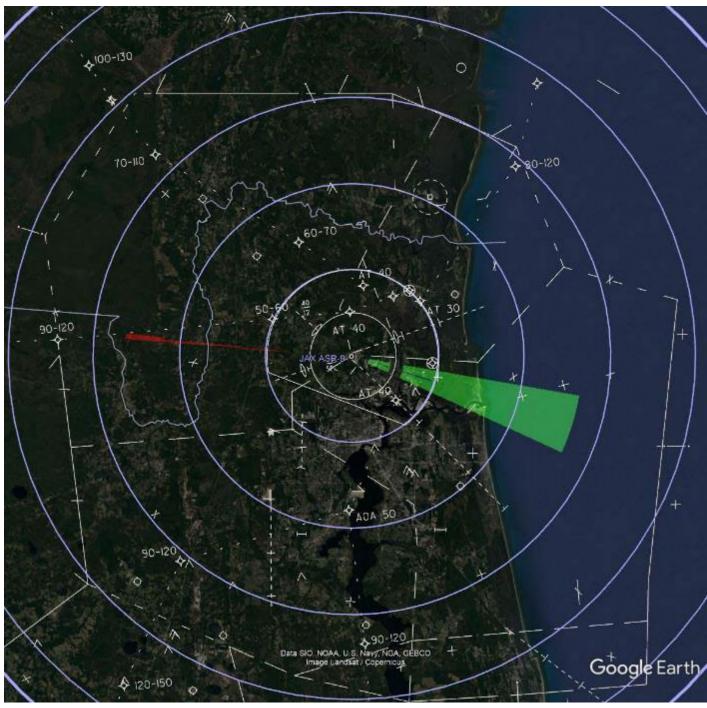


	LEG	END
	Multiple Mode Char Mode Char Inline Retur Inline Sourd False Targe False Targe	nge Source n ce et Return
INTERROGATOR P Peak Transmit Po	ower	200.0 (W)
Receiver Bandw		9.0 (MHz)
Receiver System		9.5 (dB)
Receiver Noise F Minimum Detecta		7.9 (dB) -80.0 (dBm)
Elevation Pattern	ATCRBS	open array
Elevation Tilt An	ale	0.0 (deg)
Ant. Rotation Rat		12.5 (rpm)
Pulse Length		0.80 (usec)
Vertical Polarizat	tion	
STC Exponent		2.0
STC Depth		36.0 (dB)
STC Range Step TRANSPONDER P		1.0 (nmi)
Peak Transmit Po		250.0 (W)
Receiver Bandwi		15.0 (MHz)
Minimum Trigger		-69.0 (dBm)
Reply Pulse Wid		0.45 (usec)
Receiver Loss		4.0 (dB)
Receiver Noise F	igure	7.9 (dB)

RSS BSAT Analysis: 40 NM Range 1500 to 2K FT MSL

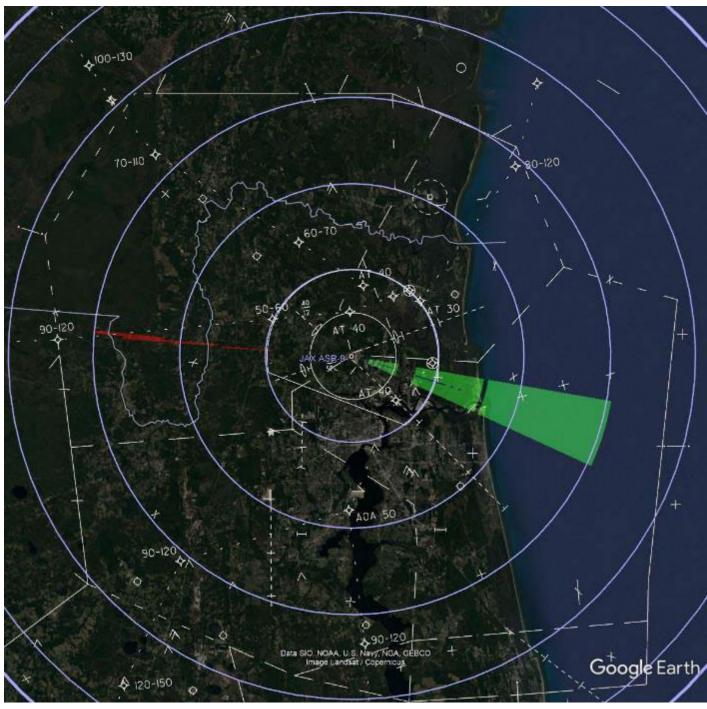


JAX-CONC_sh_o.rcs Terminal B Expansion Building Only ORIGINAL – NO TILT

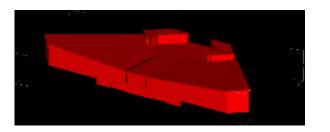


Position Name: JAX ASR9/Mode S Latitude: 30:29:35.97 Longitude: -81:41:33.61 Beacon Height MSL: 92.3 FT Beacon Height AGL: 63.6 FT

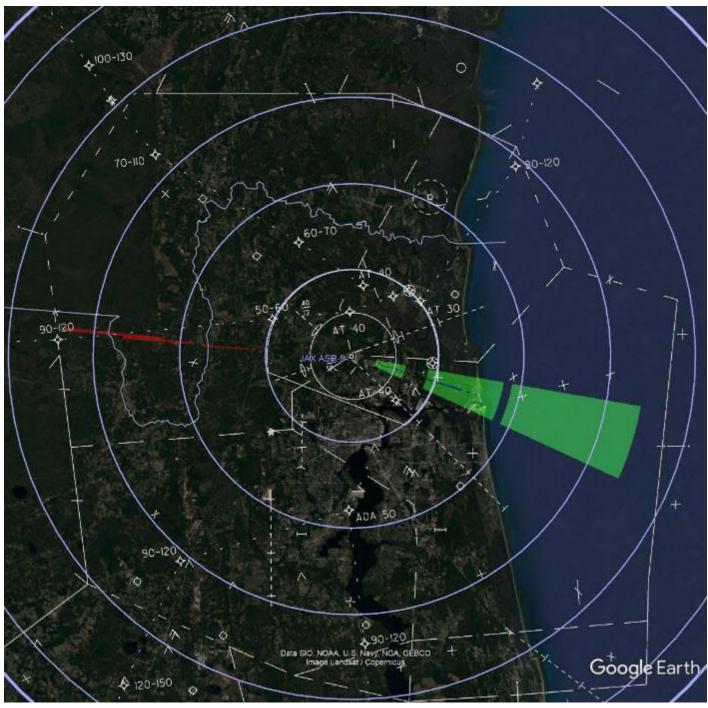

RSS BSAT Analysis: 40 NM Range 2K to 2500 FT MSL


JAX-CONC_sh_o.rcs Terminal B Expansion Building Only ORIGINAL – NO TILT

RSS BSAT Analysis: 40 NM Range 2500 to 3K FT MSL



JAX-CONC_sh_o.rcs Terminal B Expansion Building Only ORIGINAL – NO TILT



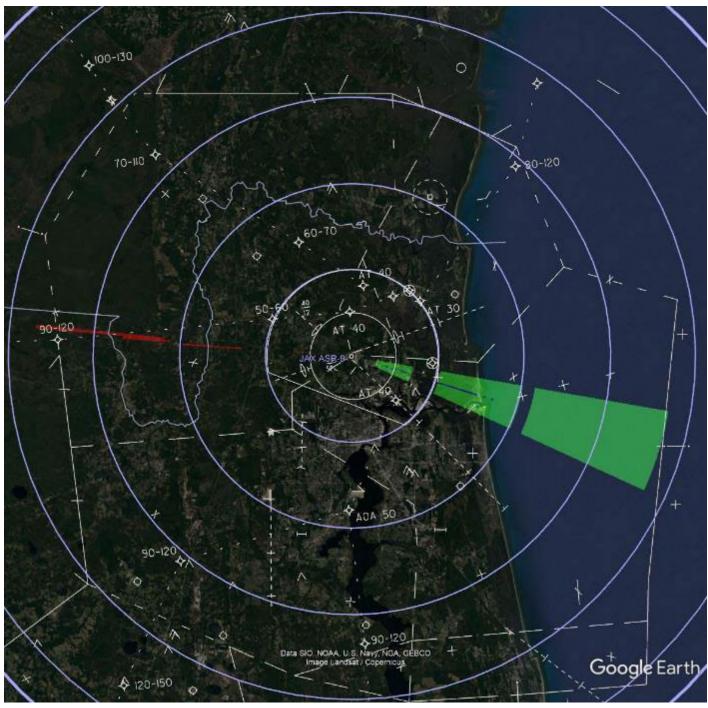
	L	EGEND	
	Mode C Inline Re Inline So False Ta	hange Return hange Source eturn	
TERROGATOR F Peak Transmit Po Receiver Bandw Receiver System Receiver Noise f Minimum Detects Elevation Tilt An Ant. Rotation Rat Pulse Length Vertical Polariza STC Exponent STC Repth STC Range Step ANSPONDER P Peak Transmit Po Receiver Bandw Minimum Trigger Repty Pulse Wid	PARAMET ower lidth Loss Figure able Signs h ATCRE gle le tion ARAMET ower lidth Level	TERS 200.0 (W) 9.0 (MHz) 9.5 (dB) 7.9 (dB) al -80.0 (dBm) 35_open_array 0.0 (deg) 12.5 (rpm) 0.80 (usec) 2.0 36.0 (dB) 1.0 (rnmi) ERS 250.0 (W) 15.0 (MHz) -69.0 (dBm)	
Receiver Loss Receiver Noise F Receiver Noise F		0.45 (usec) 4.0 (dB) 7.9 (dB)	

RSS BSAT Analysis: 40 NM Range 3K to 3500 FT MSL

JAX-CONC_sh_o.rcs Terminal B Expansion Building Only ORIGINAL – NO TILT

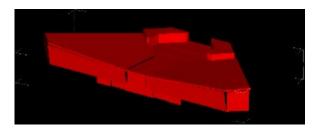


Position Name: JAX ASR9/Mode S Latitude: 30:29:35.97 Longitude: -81:41:33.61 Beacon Height MSL: 92.3 FT Beacon Height AGL: 63.6 FT

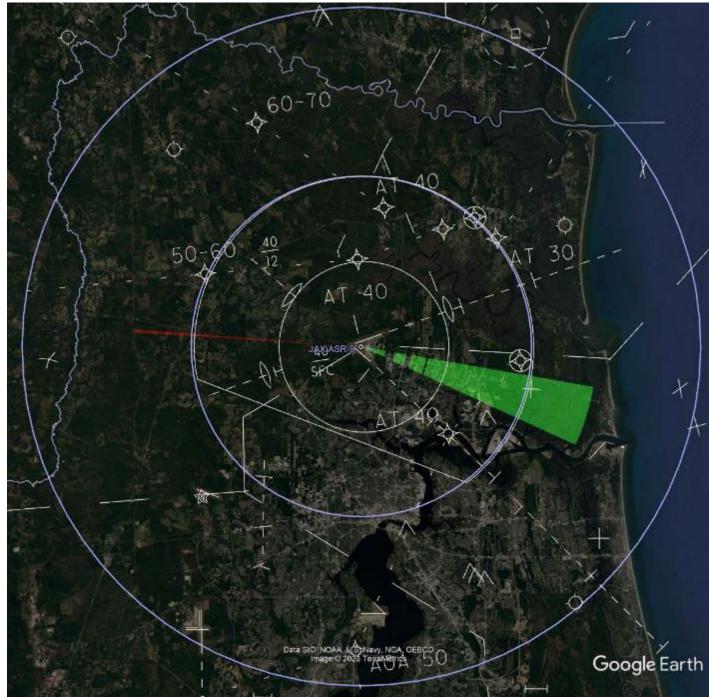

		LEGEND
	Mode Inline F Inline S False 1	Change Return Change Source Return
Elevation Til Ant. Rotation Pulse Length Vertical Pola STC Expone STC Depth STC Range 3 ANSPONDE Peak Transm Receiver Ba	it Power ndwidth stem Loss ise Figure tectable Sigr ttern ATCR t Angle Rate trization nt Step ER PARAME ER PARAME it Power ndwidth	200.0 (W) 9.0 (MHz) 9.5 (dB) 7.9 (dB) 1al -80.0 (dBm) (BS_open_array 0.0 (deg) 12.5 (rpm) 0.80 (usec) 2.0 36.0 (dB) 1.0 (nmi)
Minimum Trig Reply Pulse Receiver Los Receiver No	Width ss	-69.0 (dBm) 0.45 (usec) 4.0 (dB) 7.9 (dB)

TE

RSS BSAT Analysis: 40 NM Range 3500 to 4K FT MSL

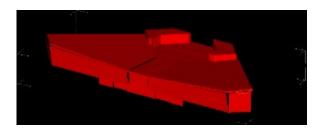


JAX-CONC_sh_o.rcs Terminal B Expansion Building Only ORIGINAL – NO TILT

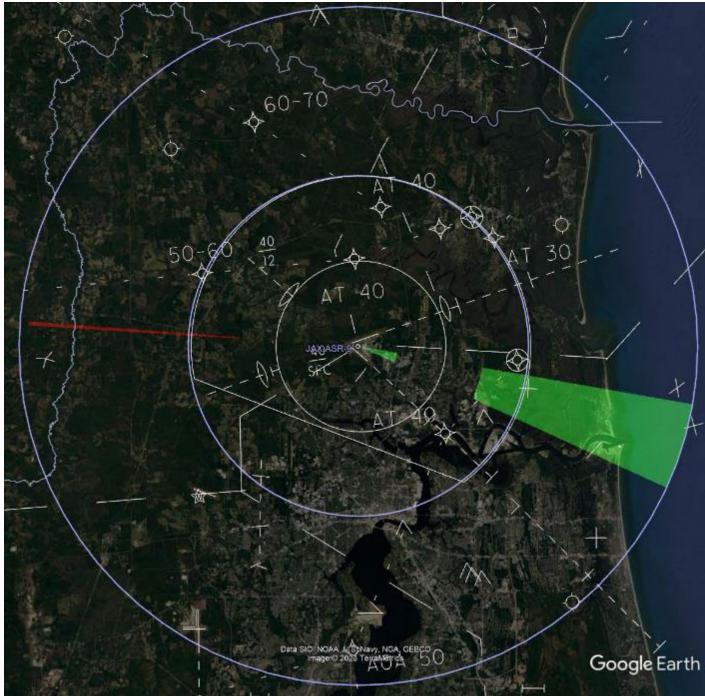

		LEGEND	
	Mode Inline f Inline S False	Change Return Change Source	
TERROGAT(Peak Transm Receiver Ba Receiver Sy Receiver No Minimum De Elevation Til Ant. Rotation Fulse Lengtt Vertical Pola STC Expone STC Depth STC Range 2 AANSPONDE Peak Transm	it Power ndwidth stem Loss ise Figure tectable Sign tectable Sign tern ATCF t Angle Rate n rization nt Step ER PARAME	200.0 (W) 9.0 (MHz) 9.5 (dB) 7.9 (dB) nal -80.0 (dBm) 1BS_open_array 0.0 (deg) 12.5 (rpm) 0.80 (usec) 2.0 36.0 (dB) 1.0 (nmi)	
Receiver Ba Minimum Tri Reply Pulse Receiver Lo Receiver No	gger Level Width ss	15.0 (MHz) -69.0 (dBm) 0.45 (usec) 4.0 (dB) 7.9 (dB)	

RSS BSAT Analysis: 20 NM Range 50 to 250 FT MSL

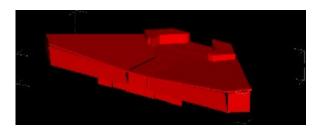
JAX-CONC_sh_r10.rcs Terminal B Expansion Building Only


Front & Side Windows Tilted 10°

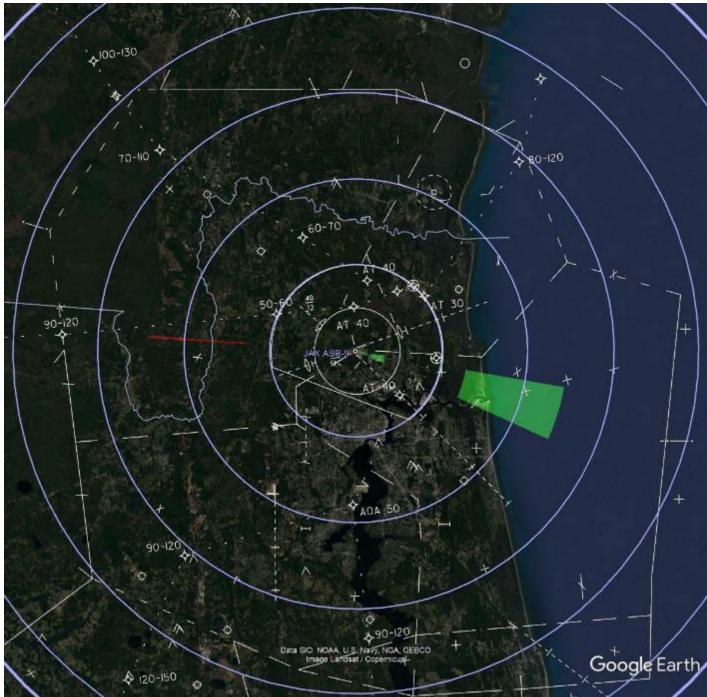
Position Name: JAX ASR9/Mode S Latitude: 30:29:35.97 Longitude: -81:41:33.61 Beacon Height MSL: 92.3 FT Beacon Height AGL: 63.6 FT


	LEGEND
	Multiple Mode Change Retum Mode Change Source Inline Retum Inline Source False Target Retum False Target Source
INTERROGATOR P Peak Transmit Po	
Receiver Bandw	
Receiver System	n Loss 9.5 (dB)
Receiver Noise F	Figure 7.9 (dB)
Minimum Detecta	able Signal -80.0 (dBm)
	n ATCRBS_open_array
Elevation Tilt An Ant. Rotation Bat	
Pulse Length	0.80 (usec)
Vertical Polarizat	
STC Exponent	2.0
STC Depth	36.0 (dB)
STC Range Step	
TRANSPONDER P	
Peak Transmit Po Receiver Bandwi	
Minimum Trigger	
Reply Pulse Wid	
Receiver Loss	4.0 (dB)
Receiver Noise F	

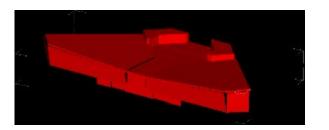
RSS BSAT Analysis: 20 NM Range 250 to 500 FT MSL


JAX-CONC_sh_r10.rcs Terminal B Expansion Building Only

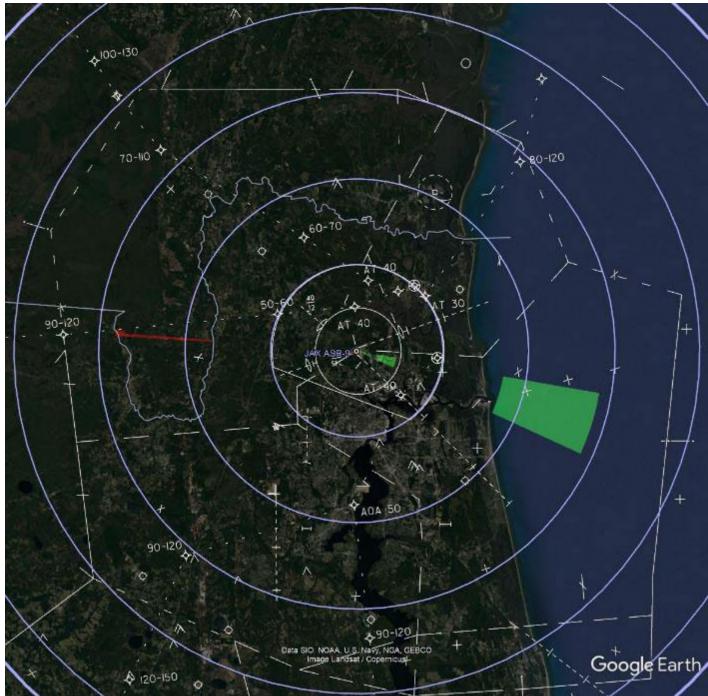
Front & Side Windows Tilted 10°


_		
	LE	GEND
	Mode Ch Inline Ret Inline Sou False Tar	
INTERROGATOF Peak Transmit Receiver Band Receiver Poise Receiver Noise Minimum Deter Elevation Patte Elevation Tilt A Ant. Rotation R Pulse Length Vertical Polariz STC Exponent STC Depth STC Range Ste TRANSPONDER Peak Transmit Receiver Band Minimum Trigg Reply Pulse W Receiver Loss Receiver Noise	Power width am Loss ctable Signal rm ATCRBS angle ate cation PARAMETE Power Power width er Level idth	200.0 (W) 9.0 (MHz) 9.5 (dB) -80.0 (dBm) open_array 0.0 (deg) 12.5 (rpm) 0.80 (usec) 2.0 36.0 (dB) 1.0 (nmi)

RSS BSAT Analysis: 40 NM Range 500 to 750 FT MSL

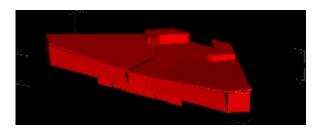

JAX-CONC_sh_r10.rcs Terminal B Expansion Building Only

Front & Side Windows Tilted 10°

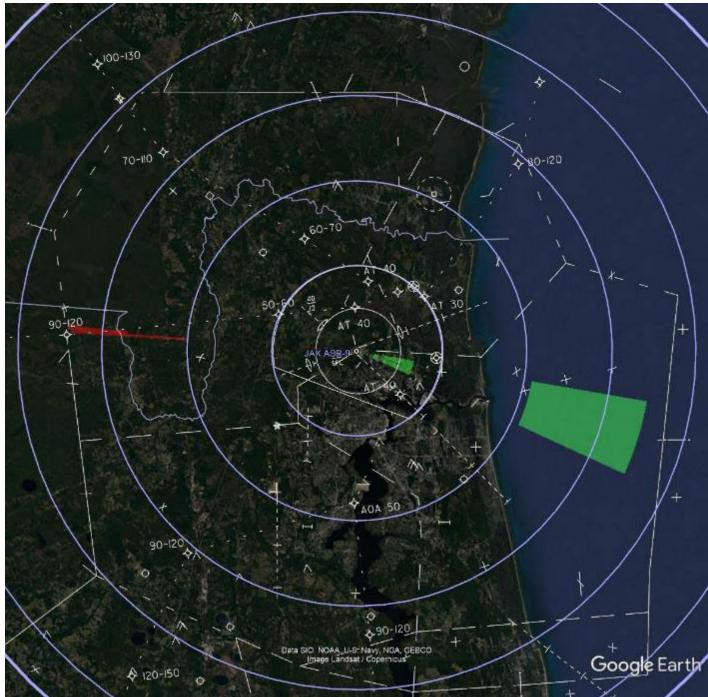

	LEGEND
	Multiple Mode Change Return Mode Change Source nline Return nline Source False Target Return False Target Source
INTERROGATOR PA Peak Transmit Pow Receiver Bandwid Receiver System L Receiver System L Receiver Noise Fit Minimum Detectab Elevation Pattern Elevation Pattern Elevation Rate Pulse Length Vertical Polarizatio STC Exponent STC Depth STC Range Step TRANSPONDER PA Peak Transmit Pow Receiver Bandwid Minimum Trigger L	RAMETERS /er 200.0 (W) th 9.0 (MHz) oss 9.5 (dB) gure 7.9 (dB) le Signal -80.0 (dBm) ATCRBS_open_array e 0.0 (deg) 12.5 (rpm) 0.80 (usec) in 2.0 36.0 (dB) 1.0 (nmi) RAMETERS /er 250.0 (W) th 15.0 (MHz) evel -69.0 (dBm)
Reply Pulse Width Receiver Loss Receiver Noise Fi	0.45 (usec) 4.0 (dB) gure 7.9 (dB)

RSS BSAT Analysis: 40 NM Range 750 to 1K FT MSL

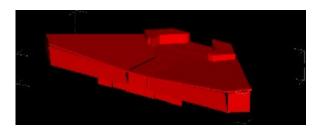
JAX-CONC_sh_r10.rcs Terminal B Expansion Building Only


Front & Side Windows Tilted 10°

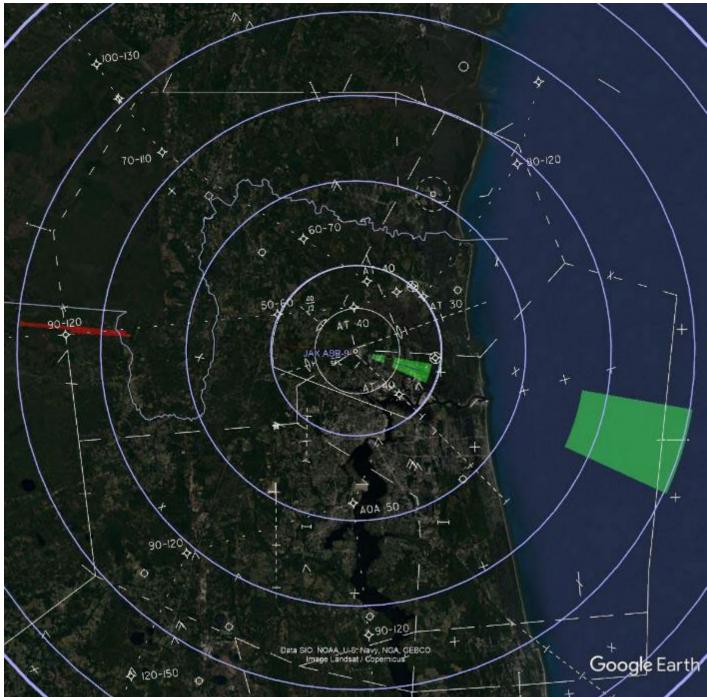
Position Name: JAX ASR9/Mode S Latitude: 30:29:35.97 Longitude: -81:41:33.61 Beacon Height MSL: 92.3 FT Beacon Height AGL: 63.6 FT


	LEGEND
	Multiple Mode Change Return Mode Change Source nline Return nline Source False Target Return False Target Source
INTERROGATOR PA Peak Transmit Pow Receiver Bandwid Receiver System L Receiver System L Receiver Noise Fit Minimum Detectab Elevation Pattern Elevation Pattern Elevation Rate Pulse Length Vertical Polarizatio STC Exponent STC Depth STC Range Step TRANSPONDER PA Peak Transmit Pow Receiver Bandwid Minimum Trigger L	RAMETERS /er 200.0 (W) th 9.0 (MHz) oss 9.5 (dB) gure 7.9 (dB) le Signal -80.0 (dBm) ATCRBS_open_array e 0.0 (deg) 12.5 (rpm) 0.80 (usec) in 2.0 36.0 (dB) 1.0 (nmi) RAMETERS /er 250.0 (W) th 15.0 (MHz) evel -69.0 (dBm)
Reply Pulse Width Receiver Loss Receiver Noise Fi	0.45 (usec) 4.0 (dB) gure 7.9 (dB)

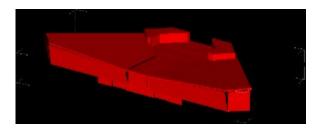
RSS BSAT Analysis: 40 NM Range 1K to 1500 FT MSL


JAX-CONC_sh_r10.rcs Terminal B Expansion Building Only

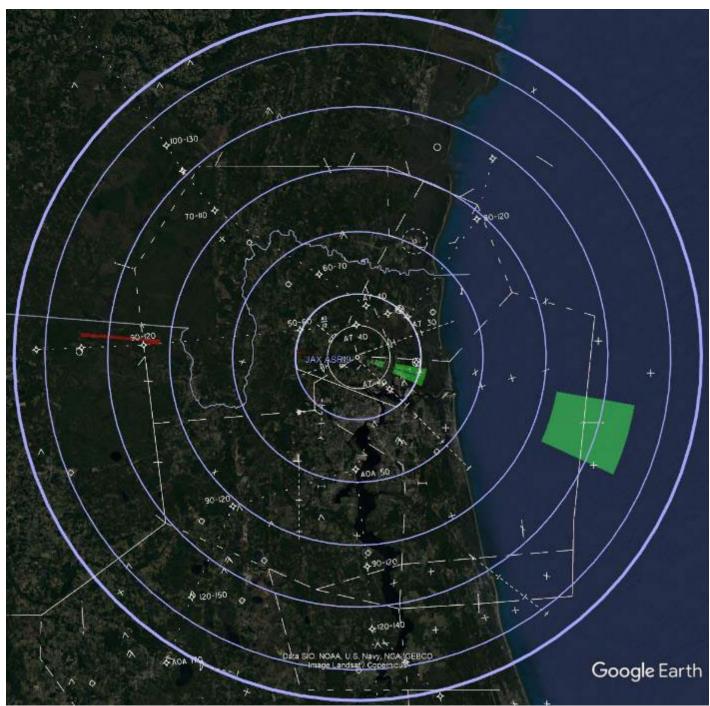
Front & Side Windows Tilted 10°


	LE(GEND
	Mode Cha Inline Retu Inline Sou False Targ	rce
TERROGATOR P. Peak Transmit Po Receiver Bandwin Receiver System Receiver Noise F Minimum Detecta Elevation Pattern Elevation Pattern Elevation Tilt Ang Ant. Rotation Rate Pulse Length Vertical Polarizati STC Exponent STC Range Step STC Range Step	wer dth Loss igure ble Signal ATCRBS le on ARAMETEF wer dth	200.0 (W) 9.0 (MHz) 9.5 (dB) 7.9 (dB) -80.0 (dBm) open_array 0.0 (deg) 12.5 (rpm) 0.80 (usec) 2.0 36.0 (dB) 1.0 (rnmi) 85 250.0 (W) 15.0 (MHz)
Minimum Trigger Reply Pulse Widt Receiver Loss Receiver Noise F	h	-69.0 (dBm) 0.45 (usec) 4.0 (dB) 7.9 (dB)

RSS BSAT Analysis: 40 NM Range 1500 to 2K FT MSL

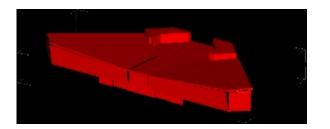

JAX-CONC_sh_r10.rcs Terminal B Expansion Building Only

Front & Side Windows Tilted 10°

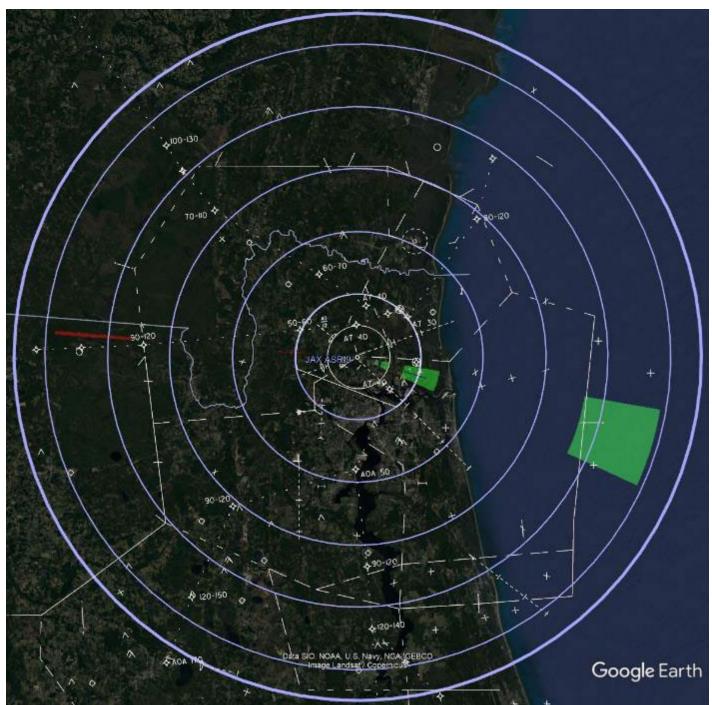

	LEGEND
	LEGEND
	Multiple Mode Change Return Mode Change Source Inline Return Inline Source False Target Return False Target Source
INTERROGATOR P	PARAMETERS
Peak Transmit Po Receiver Bandwi Receiver System Receiver Noise F Minimum Detecta	ower 200.0 (W) idth 9.0 (MHz) Loss 9.5 (dB) Figure 7.9 (dB) able Signal -80.0 (dBm) h ATCRBS_open_array gle 0.0 (deg) ite 12.5 (rpm) 0.80 (usec) tion 2.0 36.0 (dB) 1.0 (nmi) ARAMETERS ower 250.0 (W) idth 15.0 (MHz) Level -69.0 (dBm) th 0.45 (usec) 4.0 (dB) 4.0 (dB)

RSS BSAT Analysis: 60 NM Range 2K to 2500 FT MSL

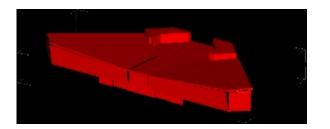
JAX-CONC_sh_r10.rcs Terminal B Expansion Building Only


Front & Side Windows Tilted 10°

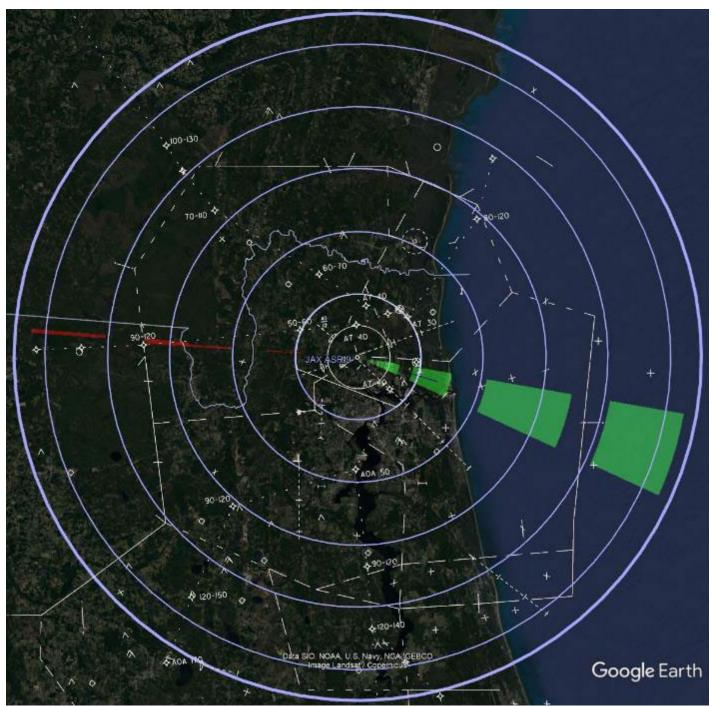
Position Name: JAX ASR9/Mode S Latitude: 30:29:35.97 Longitude: -81:41:33.61 Beacon Height MSL: 92.3 FT Beacon Height AGL: 63.6 FT


	L	EGEND	
	Mode C Inline Re Inline So False Ta		
TERROGATOR Peak Transmit F Receiver Bandv Receiver Syster Receiver Noise Elevation Tilt Ar Ant. Rotation Ra Pulse Length Vertical Polarizz STC Exponent STC Cange Ster ANSPONDER I Peak Transmit F Receiver Bandv Minimum Tigge Reply Pulse Wir	Yower Vidth m Loss Figure lable Signa n ATCRE ngle de ation PARAMET Yower Vidth r Level	200.0 (W) 9.0 (MHz) 9.5 (dB) 7.9 (dB) 1 -80.0 (dBm) 3S_open_array 0.0 (deg) 12.5 (rpm) 0.80 (usec) 2.0 36.0 (dB) 1.0 (nmi)	
Receiver Loss Receiver Noise	Figure	4.0 (dB) 7.9 (dB)	

RSS BSAT Analysis: 60 NM Range 2500 to 3K FT MSL

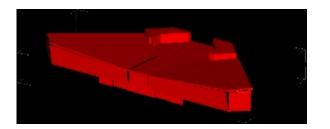

JAX-CONC_sh_r10.rcs Terminal B Expansion Building Only

Front & Side Windows Tilted 10°

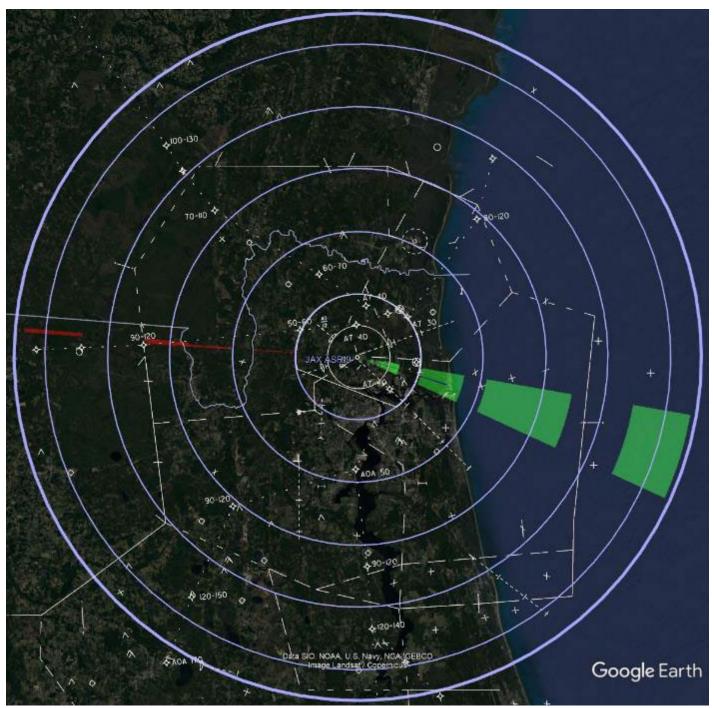

Position Name: JAX ASR9/Mode S Latitude: 30:29:35.97 Longitude: -81:41:33.61 Beacon Height MSL: 92.3 FT Beacon Height AGL: 63.6 FT

RSS BSAT Analysis: 60 NM Range 3K to 3500 FT MSL

JAX-CONC_sh_r10.rcs Terminal B Expansion Building Only

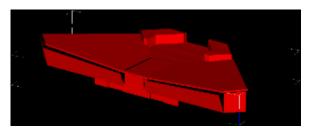

Front & Side Windows Tilted 10°

Position Name: JAX ASR9/Mode S Latitude: 30:29:35.97 Longitude: -81:41:33.61 Beacon Height MSL: 92.3 FT Beacon Height AGL: 63.6 FT

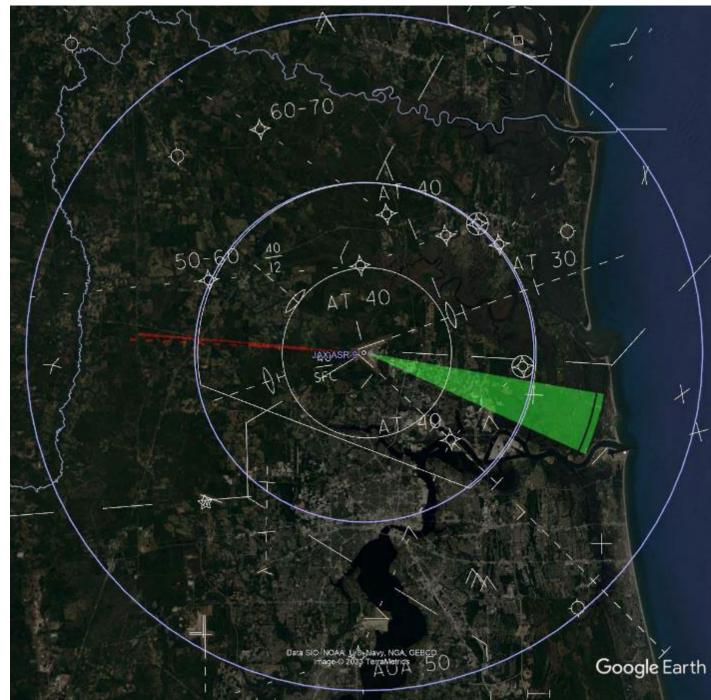

		LEGEND	
	Mode (Inline F Inline S False 1	Change Return Change Source Return	
	INTERROGATOR PARAMETERS		
Peak Transmit P	'ower	200.0 (W)	
Receiver Bandy	vidth	9.0 (MHz)	
Receiver Syster	n Loss	9.5 (dB)	
Receiver Noise	Figure	7.9 (dB)	
Minimum Detect	able Sigr	ial -80.0 (dBm)	
Elevation Patter	n ATCR	BS_open_array	
Elevation Tilt Ar	ngle	0.0 (deg)	
Ant. Rotation Ra	đe	12.5 (rpm)	
Pulse Length		0.80 (usec)	
Vertical Polariza	ation		
STC Exponent		2.0	
STC Depth		36.0 (dB)	
STC Range Ste	р	1.0 (nmi)	
TRANSPONDER F		TERS	
Peak Transmit P		250.0 (W)	
Receiver Bandy		15.0 (MHz)	
Minimum Trigge	r Level	-69.0 (dBm)	
Reply Pulse Wid	ith	0.45 (usec)	
Receiver Loss		4.0 (dB)	
Receiver Noise	Figure	7.9 (dB)	

RSS BSAT Analysis: 60 NM Range 3500 to 4K FT MSL

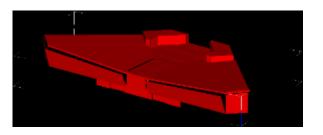
JAX-CONC_sh_r10.rcs Terminal B Expansion Building Only


Front & Side Windows Tilted 10°

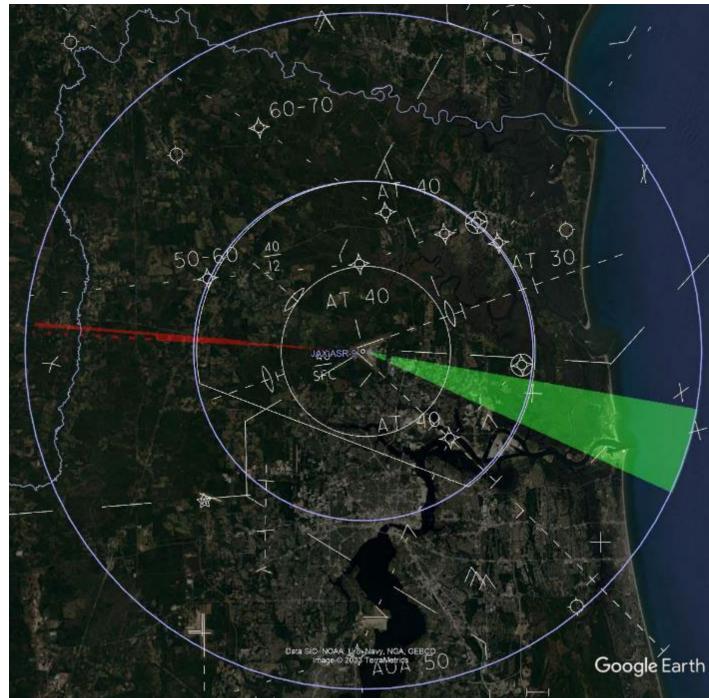
Position Name: JAX ASR9/Mode S Latitude: 30:29:35.97 Longitude: -81:41:33.61 Beacon Height MSL: 92.3 FT Beacon Height AGL: 63.6 FT


LEGEND Multiple Mode Change Return Mode Change Source Inline Return Inline Source False Target Return False Target Source TERROGATOR PARAMETERS Peak Transmit Power 200.0 (W) Receiver Bandwidth 9.0 (MHz) Receiver System Loss 9.5 (dB) Receiver Noise Figure 7.9 (dB)
Mode Change Return Mode Change Source Inline Return Inline Source False Target Return False Target Source TERROGATOR PARAMETERS Peak Transmit Power 200.0 (W) Receiver Bandwidth 9.0 (MHz) Receiver System Loss 9.5 (dB)
Peak Transmit Power 200.0 (W) Receiver Bandwidth 9.0 (MHz) Receiver System Loss 9.5 (dB)
Minimum Detectable Signal -80.0 (dBm) Elevation Pattern ATCRBS_open_array Elevation Pattern ATCRBS_open_array Elevation Tilt Angle 0.0 (deg) Ant. Rotation Rate 12.5 (rpm) Pulse Length 0.80 (usec) Vertical Polarization STC Exponent 2.0 STC Depth 36.0 (dB) STC Range Step 1.0 (nmi) ANSPONDER PARAMETERS Peak Transmit Power 250.0 (W) Receiver Bandwidth 15.0 (MHz) Minimum Trigger Level -69.0 (dBm) Reply Pulse Width 0.45 (usec) Receiver Loss 4.0 (dB)

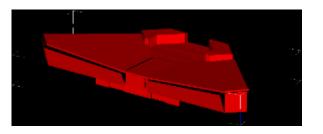
RSS BSAT Analysis: 20 NM Range 50 to 250 FT MSL


JAX-CONC_sh_r20.rcs Terminal B Expansion Building Only

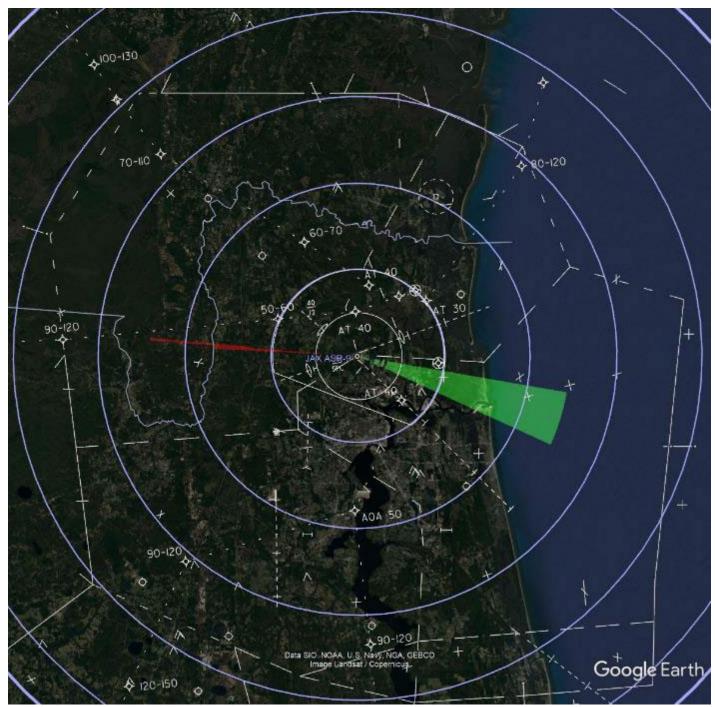
Side Windows Tilted 10° Front Windows Tilted 20°


	LE	GEND
	Mode Ch Inline Ret Inline Sou False Tar	
Peak Transm Receiver Bal Receiver Sy Receiver No Minimum Def Elevation Pal Elevation Till Ant. Rotation Pulse Length Vertical Pola STC Depth STC Range S	ndwidth stem Loss ise Figure tectable Signal ttern ATCRBS t Angle Rate rization nt step R PARAMETE it Power ndwidth	200.0 (W) 9.0 (MHz) 9.5 (dB) -80.0 (dBm) 5-00.0 (dBm) 5-00.0 (dBm) 12.5 (rpm) 0.80 (usec) 2.0 36.0 (dB) 1.0 (nmi)
Reply Pulse Receiver Los Receiver No	Width ss	0.45 (usec) 4.0 (dB) 7.9 (dB)

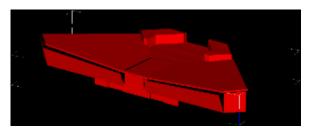
RSS BSAT Analysis: 20 NM Range 250 to 500 FT MSL


JAX-CONC_sh_r20.rcs Terminal B Expansion Building Only

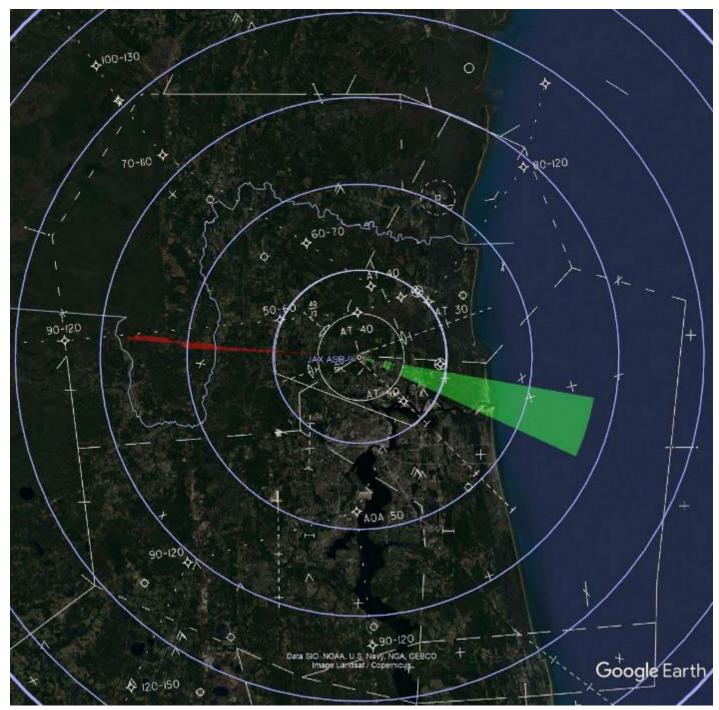
Side Windows Tilted 10° Front Windows Tilted 20°


	LEGEND
Mode Inline Inline False	Change Retum Change Source
INTERROGATOR PARAME	
Peak Transmit Power	200.0 (W)
Receiver Bandwidth	9.0 (MHz)
Receiver System Loss	9.5 (dB)
Receiver Noise Figure	7.9 (dB)
Minimum Detectable Sign	nal -80.0 (dBm)
Elevation Pattern ATCF	
Elevation Tilt Angle	0.0 (deg)
Ant. Rotation Rate	12.5 (rpm)
Pulse Length Vertical Polarization	0.80 (usec)
STC Exponent	2.0
STC Depth	36.0 (dB)
STC Range Step	1.0 (nmi)
TRANSPONDER PARAME	
Peak Transmit Power	250.0 (W)
Receiver Bandwidth	15.0 (MHz)
Minimum Trigger Level	-69.0 (dBm)
Reply Pulse Width	0.45 (usec)
Receiver Loss	4.0 (dB)
Receiver Noise Figure	7.9 (dB)
-	

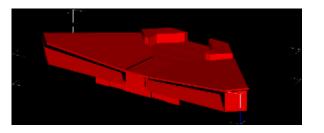
RSS BSAT Analysis: 40 NM Range 500 to 750 FT MSL


JAX-CONC_sh_r20.rcs Terminal B Expansion Building Only

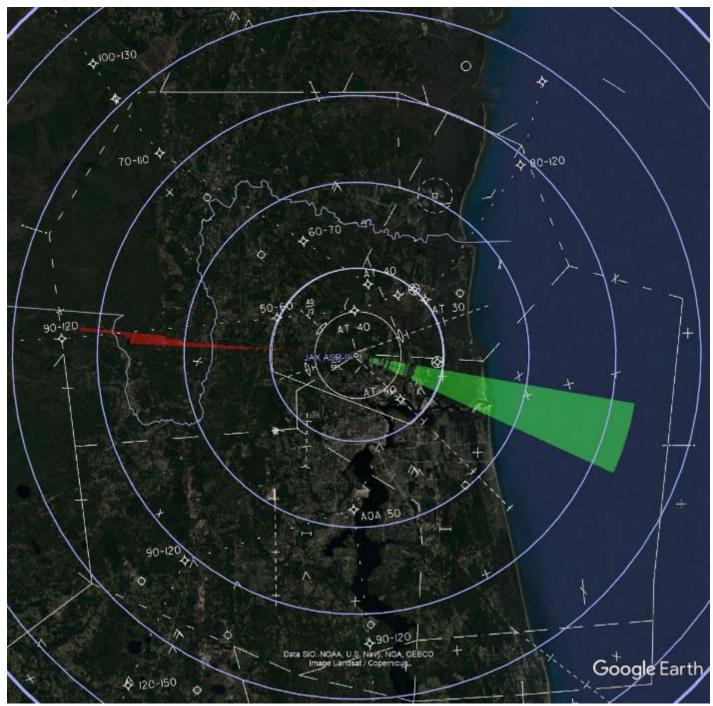
Side Windows Tilted 10° Front Windows Tilted 20°


	LEGEND
	Multiple Mode Change Retum Mode Change Source Inline Retum Inline Source False Target Retum False Target Source
Elevation Tilt Ang Ant. Rotation Rate Pulse Length Vertical Polarizat STC Exponent STC Depth STC Range Step TRANSPONDER P/	wer 200.0 (W) dth 9.0 (MHz) Loss 9.5 (dB) Figure 7.9 (dB) ible Signal -80.0 (dBm) ATCRBS_open_array gle 0.0 (deg) e 12.5 (rpm) 0.80 (usec) ion 2.0 36.0 (dB) 1.0 (nmi) ARAMETERS
Peak Transmit Po Receiver Bandwi Minimum Trigger Reply Pulse Widt Receiver Loss Receiver Noise F	dth 15.0 (MHz) Level -69.0 (dBm) h 0.45 (usec) 4.0 (dB)

RSS BSAT Analysis: 40 NM Range 750 to 1K FT MSL

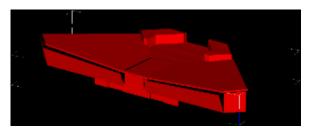

JAX-CONC_sh_r20.rcs Terminal B Expansion Building Only

Side Windows Tilted 10° Front Windows Tilted 20°

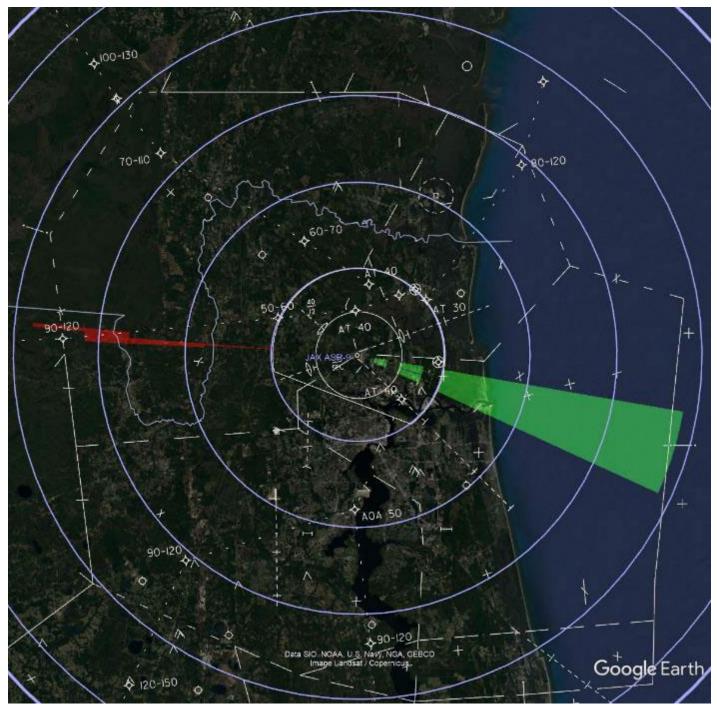

	LE	GEND
	Mode Ch Inline Ret Inline Sou False Tar	
INTERROGATOR F Peak Transmit P		
Receiver Bandw		200.0 (W)
Receiver System		9.0 (MHz) 9.5 (dB)
Receiver Noise		7.9 (dB)
Minimum Detect		-80.0 (dBm)
Elevation Pattern	n ATCRBS	_open_àrray
Elevation Tilt An		0.0 (deg)
Ant. Rotation Ra	te	12.5 (rpm)
Pulse Length		0.80 (usec)
Vertical Polariza	tion	2.0
STC Exponent STC Depth		36.0 (dB)
STC Range Step		1.0 (nmi)
TRANSPONDER P		
Peak Transmit P		250.0 (W)
Receiver Bandw	ridth	15.0 (MHz)
Minimum Trigger	Level	-69.0 (dBm)
Reply Pulse Wid	th	0.45 (usec)
Receiver Loss		4.0 (dB)
Receiver Noise	Figure	7.9 (dB)

RSS BSAT Analysis: 40 NM Range 1K to 1500 FT MSL

JAX-CONC_sh_r20.rcs Terminal B Expansion Building Only

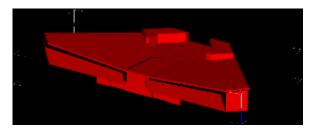

Side Windows Tilted 10° Front Windows Tilted 20°

Position Name: JAX ASR9/Mode S Latitude: 30:29:35.97 Longitude: -81:41:33.61 Beacon Height MSL: 92.3 FT Beacon Height AGL: 63.6 FT

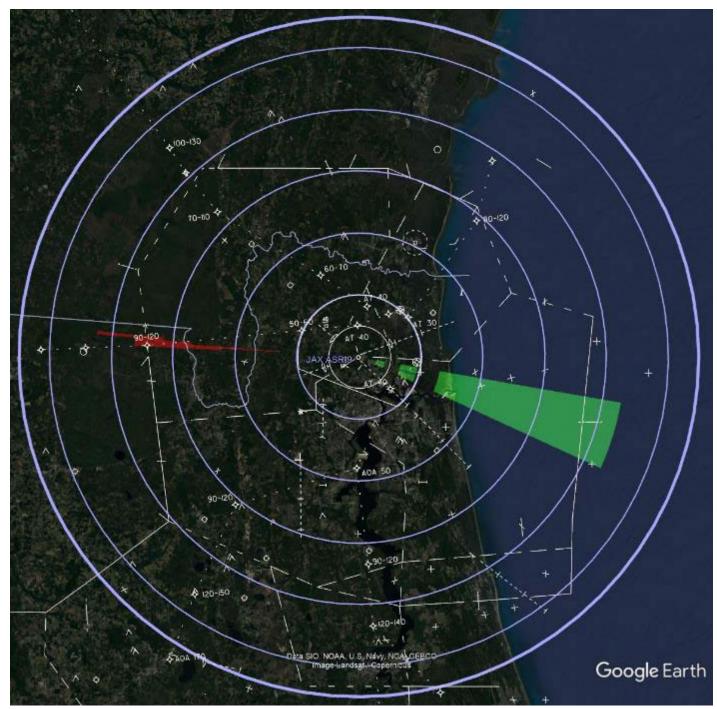

	LEGEND
	Multiple Mode Change Return Mode Change Source Inline Return Inline Source False Target Return False Target Source
INTERROGATOR P Peak Transmit Po	
Receiver Bandwid	
Receiver System	Loss 9.5 (dB)
Receiver Noise F	
Minimum Detectal	ble Signal -80.0 (dBm) ATCRBS_open_array
Elevation Tilt And	
Ant. Rotation Rate	
Pulse Length	0.80 (usec)
Vertical Polarizati	ion
STC Exponent	2.0
STC Depth	36.0 (dB)
STC Range Step TRANSPONDER PA	1.0 (nmi)
Peak Transmit Po	
Receiver Bandwid	
Minimum Trigger	
Reply Pulse Width	
Receiver Loss	4.0 (dB)
Receiver Noise F	igure 7.9 (dB)

RSS BSAT Analysis: 40 NM Range 1500 to 2K FT MSL

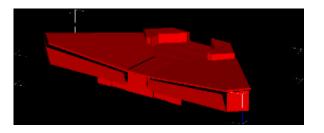
JAX-CONC_sh_r20.rcs Terminal B Expansion Building Only


Side Windows Tilted 10° Front Windows Tilted 20°

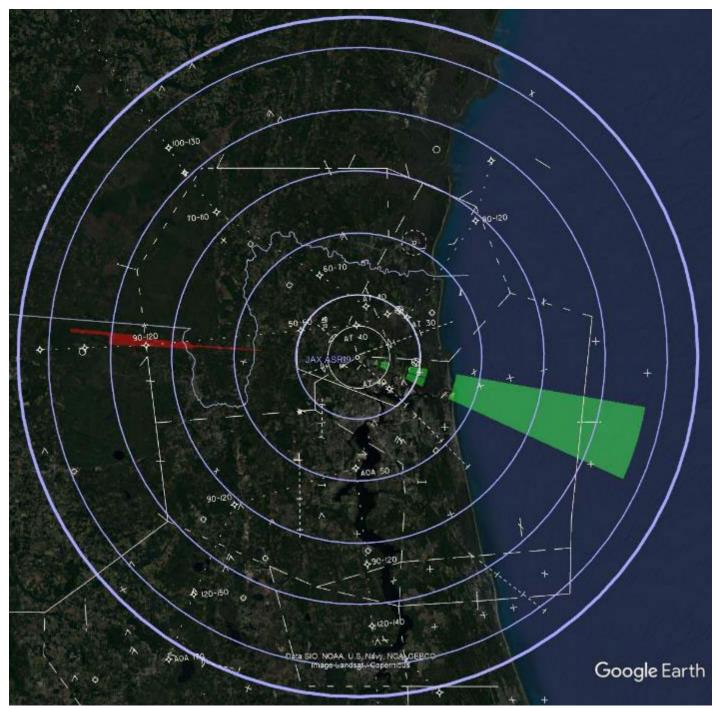
Position Name: JAX ASR9/Mode S Latitude: 30:29:35.97 Longitude: -81:41:33.61 Beacon Height MSL: 92.3 FT Beacon Height AGL: 63.6 FT


LEGEND Multiple Mode Change Return Mode Change Source Inline Return Inline Source False Target Return False Target Return False Target Source INTERROGATOR PARAMETERS Peak Transmit Power Receiver Bandwidth Store System Loss Receiver System Loss Store Store Receiver System Loss Store Store Receiver System Loss Store Store Receiver System Loss Store Store Receiver System Loss Store Store Minimum Detectable Signal -80.0 (dBm)		
Mode Change Return Mode Change Source Inline Return Inline Source False Target Return False Target Source INTERROGATOR PARAMETERS Peak Transmit Power Receiver Bandwidth Receiver System Loss 9.5 (dB) Receiver Noise Figure 7.9 (dB) Minimum Detectable Signal -80.0 (dBm)		LEGEND
Peak Transmit Power 200.0 (W) Receiver Bandwidth 9.0 (MHz) Receiver System Loss 9.5 (dB) Receiver Noise Figure 7.9 (dB) Minimum Detectable Signal -80.0 (dBm)		Mode Change Return Mode Change Source Inline Return Inline Source False Target Return
Elevation Pattern ATCRBS_open_array Elevation Tilt Angle 0.0 (deg) Ant. Rotation Rate 12.5 (rpm) Pulse Length 0.80 (usec) Vertical Polarization STC Exponent STC Depth 36.0 (dB) STC Range Step 1.0 (nmi) TRANSPONDER PARAMETERS Peak Transmit Power Peak Transmit Power 250.0 (W) Receiver Bandwidth 15.0 (MHz) Minimum Trigger Level -69.0 (dBm) Receiver Loss 4.0 (dB) Receiver Noise Figure 7.9 (dB)	Peak Transmit Po Receiver Bandwin Receiver System Receiver Noise F Minimum Detecta Elevation Pattern Elevation Tilt Ang Ant. Rotation Rate Pulse Length Vertical Polarizati STC Exponent STC Depth STC Range Step TRANSPONDER P/ Peak Transmit Po Receiver Bandwin Minimum Trigger	ower 200.0 (W) idth 9.0 (MHz) Loss 9.5 (dB) Figure 7.9 (dB) sble Signal -80.0 (dBm) MCRBS_open_array 0.0 (deg) e 12.5 (rpm) 0.80 (usec) 0.80 (usec) tion 2.0 36.0 (dB) 1.0 (nmi) ARAMETERS ywer ywer 250.0 (W) idth 15.0 (MHz) Level -69.0 (dBm) th 0.45 (usec) uh 0.45 (usec)

RSS BSAT Analysis: 60 NM Range 2K to 2500 FT MSL

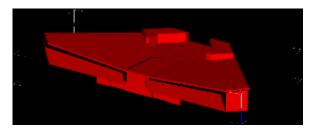

JAX-CONC_sh_r20.rcs Terminal B Expansion Building Only

Side Windows Tilted 10° Front Windows Tilted 20°

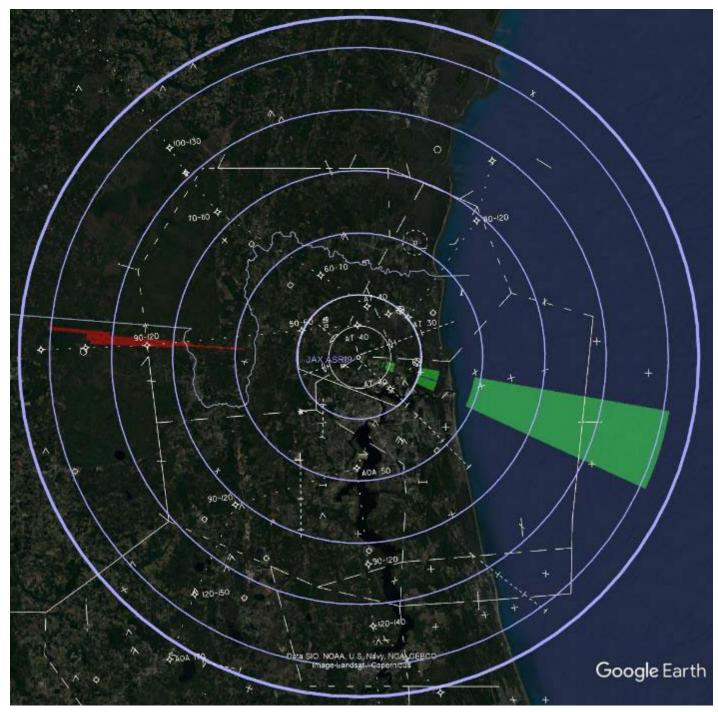

		LEGEND			
	Multiple Mode Change Return Mode Change Source Inline Return Inline Source False Target Return False Target Source				
TERROGATC Peak Transm Receiver Ba Receiver No Minimum Del Elevation Pa Elevation Pa Elevation Pa Elevation Till Ant. Rotation Pulse Length STC Expone STC Expone STC Cange 3 ANSPONDE Peak Transm Minimum Tri(it Power ndwidth stem Loss ise Figure tectable Sig ttern ATC Angle Rate n rization nt Step ER PARAME R PARAME it Power ndwidth	200.0 (W) 9.0 (MHz) 9.5 (dB) 7.9 (dB) nal -80.0 (dBm) RBS_open_array 0.0 (deg) 12.5 (rpm) 0.80 (usec) 2.0 36.0 (dB) 1.0 (nmi)			
Reply Pulse Receiver Los Receiver No	₩idth ss	0.45 (useć) 4.0 (dB) 7.9 (dB)			

RSS BSAT Analysis: 60 NM Range 2500 to 3K FT MSL

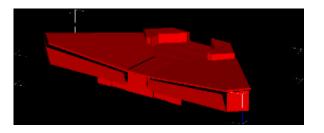
JAX-CONC_sh_r20.rcs Terminal B Expansion Building Only


Side Windows Tilted 10° Front Windows Tilted 20°

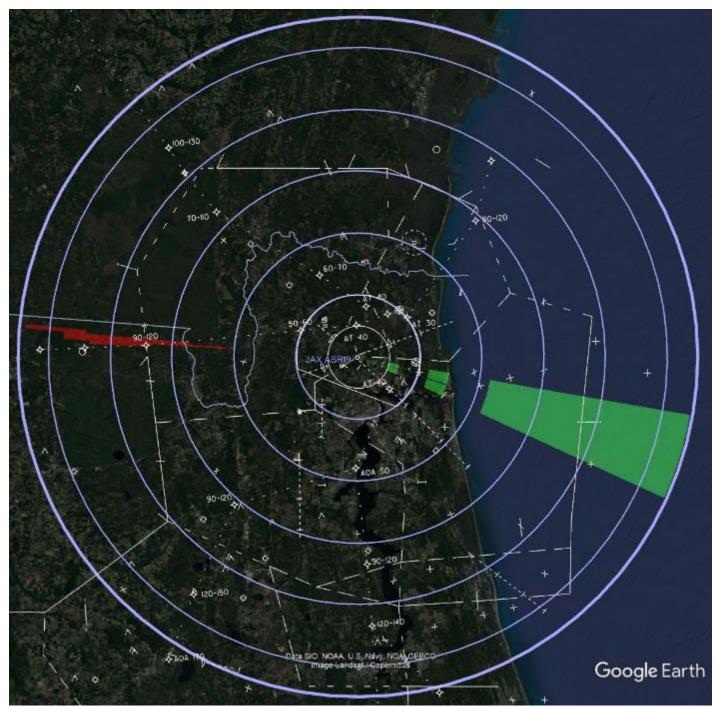
Position Name: JAX ASR9/Mode S Latitude: 30:29:35.97 Longitude: -81:41:33.61 Beacon Height MSL: 92.3 FT Beacon Height AGL: 63.6 FT


		LEGEND			
	Multiple Mode Change Return Mode Change Source Inline Return Inline Source False Target Return False Target Source				
Elevation Til Ant. Rotation Pulse Length Vertical Pola STC Expone STC Depth STC Range 3 ANSPONDE Peak Transm Receiver Ba	DR PARAMS it Power ndwidth stem Loss ise Figure tectable Sig tectable Sig tectable Sig tectable Sig tectable Sig tectable Sig tectable Sig nate nate nate step tectable Sig nate nate nate nate nate nate nate nate	ETERS 200.0 (W) 9.0 (MHz) 9.5 (dB) 7.9 (dB) nal -80.0 (dBm) RBS_open_array 0.0 (deg) 12.5 (rpm) 0.80 (usec) 2.0 36.0 (dB) 1.0 (nmi) ETERS 250.0 (W) 15.0 (MHz)			
Minimum Tri Reply Pulse Receiver Lo: Receiver No	Width	-69.0 (dBm) 0.45 (usec) 4.0 (dB) 7.9 (dB)			

RSS BSAT Analysis: 60 NM Range 3K to 3500 FT MSL


JAX-CONC_sh_r20.rcs Terminal B Expansion Building Only

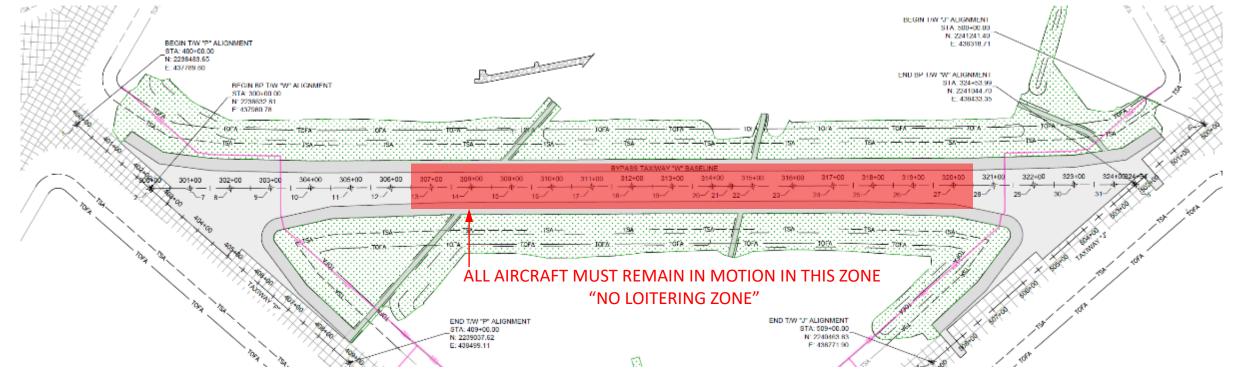
Side Windows Tilted 10°


		LEGEND			
	Multiple Mode Change Return Mode Change Source Inline Return Inline Source False Target Return False Target Source				
Elevation Till Ant. Rotation Pulse Length Vertical Pola STC Expone STC Depth STC Range 5 ANSPONDE Peak Transm Receiver Bai Minimum Trig Reply Pulse	it Power ndwidth stem Loss ise Figure ise Figure rectable Sig ttem ATC Angle Rate rization nt Step R PARAMI it Power ndwidth ger Level Width	200.0 (W) 9.0 (MHz) 9.5 (dB) 7.9 (dB) mal -80.0 (dBm) RBS_open_array 0.0 (deg) 12.5 (rpm) 0.80 (usec) 2.0 36.0 (dB) 1.0 (nmi)			
Receiver Los Receiver No		4.0 (dB) 7.9 (dB)			

RSS BSAT Analysis: 60 NM Range 3500 to 4K FT MSL

JAX-CONC_sh_r20.rcs Terminal B Expansion Building Only

Side Windows Tilted 10° Front Windows Tilted 20°



Position Name: JAX ASR9/Mode S Latitude: 30:29:35.97 Longitude: -81:41:33.61 Beacon Height MSL: 92.3 FT Beacon Height AGL: 63.6 FT

		LEGEND
	Mode Inline Inline False	le Change Retum Change Source Retum Source Target Retum Target Source
TERROGATO Peak Transm Receiver Bai Receiver Sys Receiver No	it Power ndwidth stem Loss	ETERS 200.0 (W) 9.0 (MHz) 9.5 (dB) 7.9 (dB)
Minimum Det Elevation Pa Elevation Tilt Ant. Rotation	tectable Sig ttern ATCI Angle Rate	nal -80.0 (dBm) RBS_open_array 0.0 (deg) 12.5 (rpm)
Pulse Length Vertical Pola STC Expone STC Depth STC Range (rization nt Step	0.80 (usec) 2.0 36.0 (dB) 1.0 (nmi)
ANSPONDE Peak Transm Receiver Bai Minimum Trig Reply Pulse Receiver Los Receiver No	it Power ndwidth gger Level Width ss	250.0 (W) 15.0 (MHz) -69.0 (dBm) 0.45 (usec) 4.0 (dB) 7.9 (dB)

Appendix B Bypass Taxiway "W" Analysis

Clip from JAX Jacobs drawing SK-16, titled FAA-TAXIWAY "W" ELEVATIONS AND COORDINATES

	FAA CRITICAL POINTS FOR TAXIWAY "W"					
POINT NO.	ELEVATION	NORTHING	EASTING	LATITUDE	LONGITUDE	DESCRIPTION
1	24.41	2238483.64	437789.87	N30" 29' 20.84"	W81" 41' 35.92"	TWP BASELINE START
2	24.57	2239832-89	437380.78	NSP 29 22 33*	WB1* 41* 33 75*	DWW BASELINE START
8	25.55	2289037.62	438499.11	N30" 29" 26.87"	W81* 41* 27.85*	TWP BASELINE END
4	25.62	2240463.83	430771.90	N30° 29' 40.50"	W01* 41* 24.03*	TWJ BASELINE END
5	24.68	2241044.70	430433.35	N30° 29' 46.23"	W01* 41* 20.74*	TWW BASELINE END
6	26.41	2241241.40	438318.71	N30° 29' 48.17"	W81" 41' 30.07"	TWJ BASELINE START
7	24.11	2238731.09	437999.22	N30" 29" 23.30"	W91" 41" 33.54"	TWW STATION 301+00
а	23.92	2238829.38	438017.67	NRP 28 24 28*	WB1141133341	DWW STATION 302400
9	23.87	2238927.66	438035.11	N30" 29" 25.25"	W81" 41" 33.14"	TWW STATION 303+00
10	24.09	2239025.95	430054.55	N30* 29* 26 22*	W01* 41* 32.83*	TWW STATION 304+00
11	24.42	2239124.31	430072.98	N30° 29' 27 20"	W01* 41* 32.73*	TWW STATION 305+00
12	24.76	2289222.52	438091.44	N30" 29" 28.17"	W81" 41" 82.52"	TWW STATION 306(00
10	25.09	2209020.00	430109.00	N30" 29' 29.15"	W01" 41" 32.32"	TWW STATION 307+00
14	25.43	2239419.09	438128.32	NSP 29 30.12*	W81" 41" 32.12"	TWW STATION 308+00
15	25.76	2239617.37	438146.76	N30" 29" 31.09"	W81" 41' 81.91"	TWW STATION 309+00
16	26.10	2239615-66	438185.20	NMP 29 32 07*	W01140101711	DWW STATION 340+00

FAA CRITICAL POINTS FOR TAXIWAY "W"						
POINT NO.	ELEVATION	NORTHING	EASTING	LATITUDE	LONGITUDE	DESCRIPTION
17	26.43	2239713.94	438183.65	N30" 29' 33.04"	W811 41 31.501	TWW STATION 311+00
18	2677	2239812-22	438202.09	N30" 29 34 02"	W61* 41* 31 30*	IWW STATION 312+00
19	27.10	2239910.61	438220.63	N30" 29' 34.99"	W81141131.101	TWW STATION \$13+00
20	27.82	2240008.79	438238.97	NS0" 29' 85.96"	W811 41 30.891	TWW STATION \$14+00
21	27.35	2240053.29	430247.31	N00" 29' 06.40"	W01* 41* 30.60*	TWW PROFILE HIGH POINT
22	27.81	2240107.08	438257.42	N30* 29' 36.94*	W81* 41* 30.69*	TWW STATION \$15(00
23	27.07	2240205.36	438275.85	N00" 29' 07.91"	W81*41*30.49*	TWW STATION 316+00
24	26.60	224030345	438254 30	N30" 29 38 89"	W81141130.281	IWW STATION 317+00
25	26.01	2240401.93	438312.74	N30" 29' 39.86"	W81* 41* 30.08*	TWW STATION 318+00
26	25.42	2240500.22	430331.18	N30* 29' 40.83*	W61* 41* 29.67*	TWW STATION \$19+00
27	24.83	2240598.50	438349.63	N30" 29' 41.01"	W01* 41* 29.67*	TWW STATION 320+00
28	24.29	2240595.79	438368.07	NS0* 29' 42.78*	W81141129.47*	TWW STATION \$21(00
29	24.11	2240795.07	438386.51	N00" 29' 43.75"	W01*41*29.26*	TWW STATION 322+00
30	24.27	2240893.36	438404.95	N30* 29' 44.73*	W81141129.061	TWW STATION 323(00
31	24.48	2240991.64	438423.40	N30" 29' 45.70"	W611 41 28.85"	TWW STATION 324+00

View from Beacon Focal Point of 92.26 FT MSL

0901

Position Name: JAX ASR9/Mode S Latitude: 30:29:35.97 Longitude: -81:41:33.61 Beacon Height MSL: 92.3 FT Beacon Height AGL: 63.6 FT

080

130

Google

65

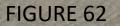
Aircraft Tail Reflective Zone: 67.95 FT MSL to Top

110.0

TAX - SALE IN COMPANY

and a state of the

120*


TATE & WART

AND TAXABLE REPORT OF A DESCRIPTION OF A

in the local sectors of

1001

Integra Lancies Cooperations Research, March, Cooperations, Cooperations Lane Lancies Lancies, Phys. Rev. 7

View from Beacon Focal Point of 92.26 FT MSL

0901

Position Name: JAX ASR9/Mode S Latitude: 30:29:35.97 Longitude: -81:41:33.61 Beacon Height MSL: 92.3 FT Beacon Height AGL: 63.6 FT

080

130

Google

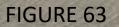
66

Aircraft Tail Reflective Zone: 71.62 FT MSL to Top

110.0

THE PARTY OF THE OWNER

and a state of the


120*

and a strate

THE REAL PROPERTY AND ADDRESS OF THE OWNER

1001

Integra Lancies Cooperations Rese allo, March, Oad News, Oad, of Table Lane Landon Lancies, Piels, Porces

View from Beacon Focal Point of 92.26 FT MSL

0901

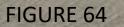
Position Name: JAX ASR9/Mode S Latitude: 30:29:35.97 Longitude: -81:41:33.61 Beacon Height MSL: 92.3 FT Beacon Height AGL: 63.6 FT

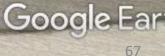
060

130

Aircraft Tail Reflective Zone: 82.7 FT MSL to Top

110.0


and a state of the


120*

and a spart

1001

Integra Lancies Cooperations Rese allo, March, Oad News, Oad, of Table Lane Landon Lancies, Piels, Porces

FI	Gι	JRE	65

Google Earth

Image Landsat / Copernicus

		1000		
		. 198		
			4	
	TW-N	N 324	7	
	TW-W	/ 323	9	
			TW-W	322
	т	w-wg		SEE
	T	W-W33	20	
	TV	1-143	19	1
		-1431		
1		T		
	TW-	W 317		
		0 V 316		
-	TW-V	V 316		
	TW-W	315		
R-9 °	TW-W			
	тw-w	313		
	TW-W 3			
T	W-W 31	1		
	N-W 310			
)		
TW	-W 309			
	W 308			
TW-	W 308			
TW-	W 307			
TW-V				
TVV-V	V 306	1		
TW-W	305		1	
TW-W			-60	
TW-W 3	303			
TW-W 30	02			
TW-W 30	1			
Contraction of the second				

JAX

_	Centroid Latitude	Centroid Longitude	Ground Elevation	Centroid Elevation	Centroid Angle to Beacon Antenna	Centroid Range to Beacon Antenna	Left Ext. Angle of Tail	Right Ext. Angle of Tail
Tail #	C_Lat	C_Lon	G_Elev (FT AMSL)	C_Elev (FT AMSL)	C_Az (Deg)	C_Rng (FT)	L_Az (Deg)	R_Az (Deg)
301	N30° 29' 23.30"	W81° 41' 33.54"	24.11	66.352	359.7259	1280.155	179.622	179.937
302	N30° 29' 24.28"	W81° 41' 33.34"	23.92	66.162	358.8541	1181.361	178.715	179.083
303	N30° 29' 25.25"	W81° 41' 33.14"	23.87	66.112	357.8257	1083.901	177.641	178.079
304	N30° 29' 26.22"	W81° 41' 32.93"	24.09	66.332	356.5438	986.9074	176.353	176.881
305	N30° 29' 27.20"	W81° 41' 32.73"	24.42	66.662	355.0338	889.4358	174.778	175.427
306	N30° 29' 28.17"	W81° 41' 32.52"	24.76	67.002	353.0999	793.8419	172.814	173.629
307	N30° 29' 29.15"	W81° 41' 32.32"	25.09	67.332	350.6974	698.2559	170.304	171.354
308	N30° 29' 30.12"	W81° 41' 32.12"	25.43	67.672	347.5616	605.2753	166.997	168.393
309	N30° 29' 31.09"	W81° 41' 31.91"	25.76	68.002	343.2126	515.012	162.48	164.409
310	N30° 29' 32.07"	W81° 41' 31.71"	26.1	68.342	337.1255	427.6777	156.043	158.826
311	N30° 29' 33.04"	W81° 41' 31.50"	26.43	68.672	328.0509	348.8907	146.462	150.65
312	N30° 29' 34.02"	W81° 41' 31.30"	26.77	69.012	314.2687	282.2602	131.866	138.244
313	N30° 29' 34.99"	W81° 41' 31.10"	27.1	69.342	294.2684	240.9091	110.903	119.722
314	N30° 29' 35.96"	W81° 41' 30.89"	27.32	69.562	270.2436	237.9959	86.799	96.031
315	N30° 29' 36.94"	W81° 41' 30.69"	27.31	69.552	249.014	273.6462	66.574	73.64
316	N30° 29' 37.91"	W81° 41' 30.49"	27.07	69.312	234.3212	336.0738	52.699	57.389
317	N30° 29' 38.89"	W81° 41' 30.28"	26.6	68.842	224.6426	414.6531	43.588	46.679
318	N30° 29' 39.86"	W81° 41' 30.08"	26.01	68.252	218.1621	499.8758	37.438	39.554
319	N30° 29' 40.83"	W81° 41' 29.87"	25.42	67.662	213.6805	590.0905	33.097	34.613
320	N30° 29' 41.81"	W81° 41' 29.67"	24.83	67.072	210.2958	683.3831	29.906	31.035
321	N30° 29' 42.78"	W81° 41' 29.47"	24.29	66.532	207.7653	777.5934	27.473	28.342
322	N30° 29' 43.75"	W81° 41' 29.26"	24.11	66.352	205.8364	873.3681	25.564	26.252
323	N30° 29' 44.73"	W81° 41' 29.06"	24.27	66.512	204.2184	970.4988	24.029	24.586
324	N30° 29' 45.70"	W81° 41' 28.85"	24.48	66.722	202.9602	1067.677	22.77	23.23

68

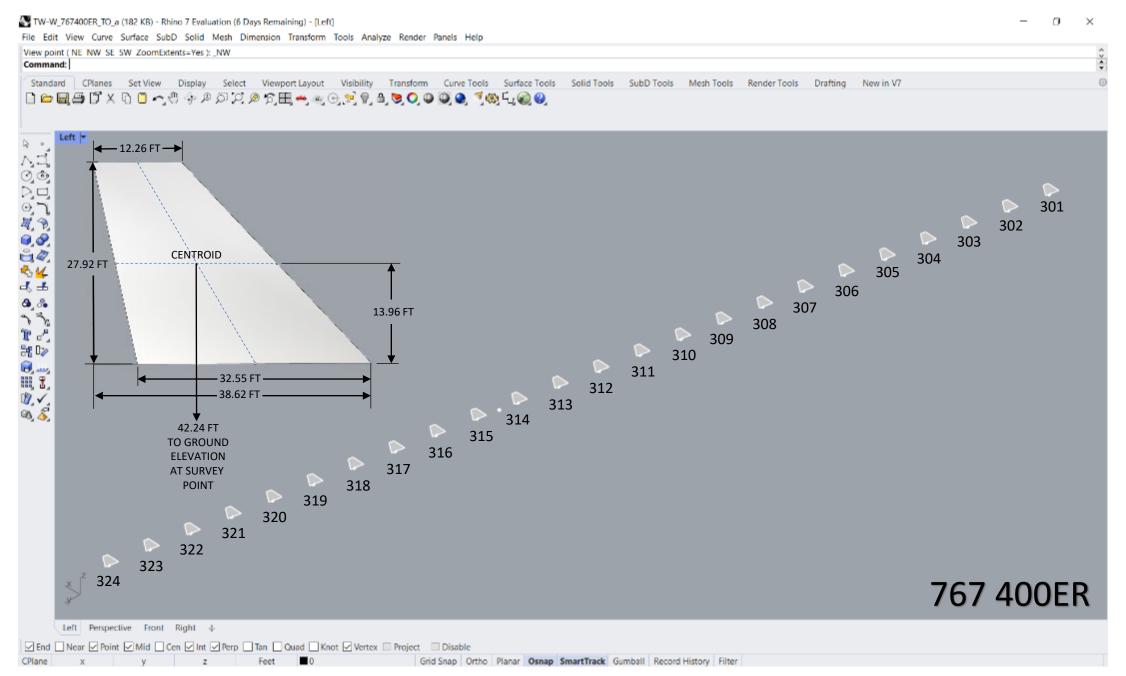
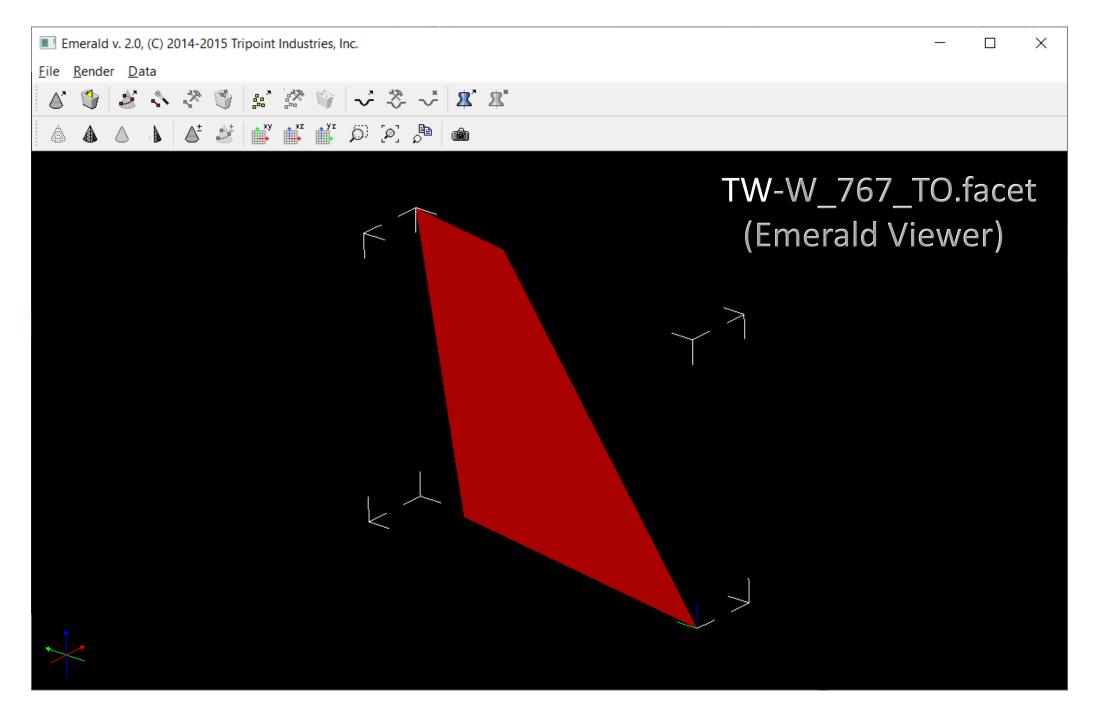
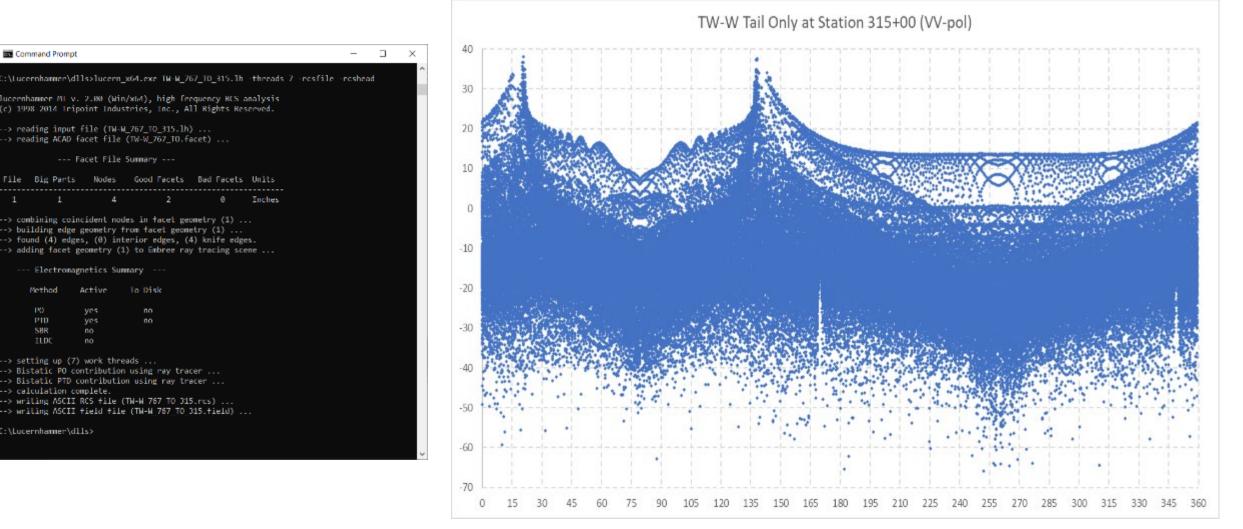


FIGURE 66




FIGURE 67

					<u>*.lh file edits</u># Uniformly spaced a	ingle specification. Note: All a	angles should be in degree	s.	
					# # Incident elevation	/theta : start end step		Input Tail # Here:	315
TW-W_767_TO_315.lh -	Notepad			_	85.25628993	90	0	Note: 90 was added as	s end but not used since step is 0
e <u>E</u> dit F <u>o</u> rmat <u>V</u> iew	<u>H</u> elp				# Incident azimuth/p 200.9860031	ohi : start end step 180	0	Note: 180 was added a	as end but not used since step is 0
	vation/theta : start end	step							
	.00 0				Beacon Antenna Coord	. ,		81°41'33.61022"W	30.49332592 -81.6926695 30.49359444 -81.6918583
	muth/phi : start end step				Centroid Coordinates (N Beacon Antenna Focal I		N30° 29' 36.94" 92.26	W81° 41' 30.69"	28.11947577 (meters)
0.9860031	180.00 0					y; CL Antenna Rotation, Point			
	Ln 1, Col 1	100%	Windows (CRLF)	UTF-8	Ground Elevation at Ce	ntroid (Feet MSL)		From 2019 Lidar Data	
					Max. Height of Structur		n/a		
					Max. Elevation of Struc Centroid Elevation (Fee	, ,	83.508 69.552		25.45199634 (meters) 21.19841512 (meters)
					Calculated Range Ant. t	,	273.6462273	0.045036343	
TW-W_767_TO_31	5.con - Notepad		- 🗆	X					
	Kew Help					Centroid to Ant. FP in degrees			
<u>F</u> ile <u>E</u> dit F <u>o</u> rmat <u>V</u>	-				Spherical of Above		85.25628993		
Ø	#0 = no bistatic data	, 1 = b19	static data	^	Calculated Azimuth Cen	atroid to Ant EP in °T	249.0139969		
30.49332592	#radar latitude				Spherical of Above		200.9860031		
-81.69266951	#radar longitude				•				
28.11947577	#antenna height (MSL	m)			L Corner of Reflector (C	CW)	66.574		
30.49359444	<pre>#building latitude</pre>				Spherical of Above	0.1.1)	23.426	and the second	V.N.LLED
-81.69185833	<pre>#building longitude</pre>				R Corner of Reflector (C Spherical of Above	CW)	73.64		
21.19841512	<pre>#building center heig</pre>	ht (MSL r	n)		Spherical of Above		10.50	and a second second	The Westman Provide States of the States of
25.45199634	<pre>#building maximum hei</pre>	ght (MSL	m)		RSS Context File Inform	nation (*.con)		Constitution of the second	and the state of the state of the state
0.36	<pre>#start elevation belo</pre>	w vertica	al		0	#0 = no bistatic	: data, 1 = bistatic data	• • •	
90.0	<pre>#stop elevation below</pre>	vertical	1		30.49332592	#radar latitude		Context	and Lucernham
0.36	#elevation increment				-81.69266951	#radar longitud			otupe for the 70
0.0	#start azimuth CCW fr	om F			28.11947577 30.49359444	#antenna heigh #building latitud	. ,	File Se	etups for the 76
359.28	#stop azimuth CCW fro				-81.69185833	#building longit		400FR Ta	il Only along By
0.72	#azimuth increment CC				21.19841512	0 0	r height (MSL m)		, ,
16.36	#azimuth start of bui		d from E		25.45199634	#building maxin	num height (MSL m)	TW "W'	" at Station 315-
23.426	#azimuth end of build				0.36		n below vertical		
23.420		ING CCM		~	90 0.36	•	h below vertical		
				*	0.36	#elevation incre #start azimuth	ement below vertical CCW from F		FIGURE 68
Ln	1, Col 1 100% Unix	(LF)	UTF-8		359.28	#stop azimuth (74
					0.72	•	ment CCW from E		71
					16.36		of building CCW from E		
					22 426	Hosimuth and	of building CCW from F		

23.426

#azimuth end of building CCW from E

TW-W_767_TO_315.rcs (Lucernhammer RCS)

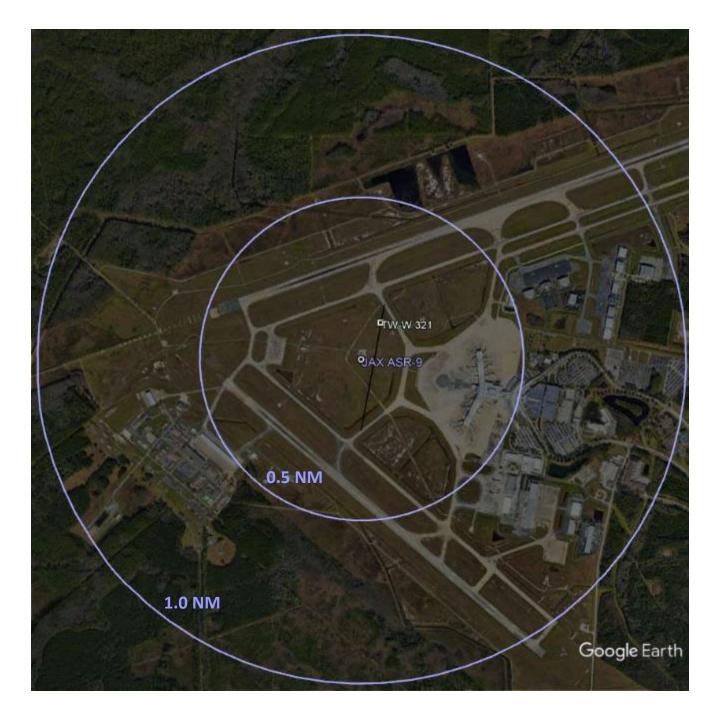
Method

FIGURE 69

Bypass Taxiway "W"

RSS BSAT Analysis Range Azimuth False Target Plots

Boeing 767 400ER Tail Only TW-W_767_TO_321.rcs Bypass Taxiway "W" Station 321+00 (Point 28) N30° 29' 42.78", W81° 41' 29.47" Ground Elevation 24.29' MSL Centroid Elevation 66.53' MSL (+42.24' AGL)



Position Name: JAX ASR9/Mode S Latitude: 30:29:35.97 Longitude: -81:41:33.61 Beacon Height MSL: 92.3 FT Beacon Height AGL: 63.6 FT

	LE	GEND
	Mode Ch Inline Ret Inline Sou False Tar	
TERROGATOR P	ARAMETE	RS
Peak Transmit Po Receiver Bandwi Receiver System Receiver Noise F Minimum Detecta Elevation Tilt Ang Ant. Rotation Rate Pulse Length Vertical Polarizati STC Exponent STC Range Step STC Range Step RANSPONDER P/ Peak Transmit Po Receiver Bandwid Minimum Trigger Receiver Loss Receiver Noise F	wer dth Loss Tigure ble Signal ATCRBS gle e ion ARAMETE wer dth Level h	200.0 (W) 9.0 (MHz) 9.5 (dB) 7.9 (dB) -80.0 (dBm) 5 open_array 0.0 (deg) 12.5 (rpm) 0.80 (usec) 2.0 36.0 (dB) 1.0 (nmi)

Boeing 767 400ER Tail Only TW-W_767_TO_321.rcs Bypass Taxiway "W" Station 321+00 (Point 28) N30° 29' 42.78", W81° 41' 29.47" Ground Elevation 24.29' MSL Centroid Elevation 66.53' MSL (+42.24' AGL)

Position Name: JAX ASR9/Mode S Latitude: 30:29:35.97 Longitude: -81:41:33.61 Beacon Height MSL: 92.3 FT Beacon Height AGL: 63.6 FT

	LEGEND
M M In In Fi	ultiple ode Change Return ode Change Source line Return line Source alse Target Return alse Target Source
TERROGATOR PAR	AMETERS
Peak Transmit Powe	r 200.0 (W)
Receiver Bandwidth	
Receiver System Lo	
Receiver Noise Figu	
Minimum Detectable	
	ATCRBS_open_array
Elevation Tilt Angle	0.0 (deg)
Ant. Rotation Rate	12.5 (rpm)
Pulse Length	0.80 (usec)
Vertical Polarization STC Exponent	2.0
STC Depth	36.0 (dB)
STC Range Step	1.0 (nmi)
RANSPONDER PAR	
Peak Transmit Powe	
Receiver Bandwidth	
Minimum Trigger Le	
Reply Pulse Width	0.45 (usec)
Receiver Loss	4.0 (dB)
Receiver Noise Figu	
-	

Boeing 767 400ER Tail Only TW-W_767_TO_320.rcs Bypass Taxiway "W" Station 320+00 (Point 27) N30° 29' 41.81", W81° 41' 29.67" Ground Elevation 24.83' MSL Centroid Elevation 67.07' MSL (+42.24' AGL)

Position Name: JAX ASR9/Mode S Latitude: 30:29:35.97 Longitude: -81:41:33.61 Beacon Height MSL: 92.3 FT Beacon Height AGL: 63.6 FT

	LE	GEND	
	Mode Cha Inline Ret Inline Sou False Tan		
TERROGATOR P			
Peak Transmit Po		200.0 (W)	
Receiver Bandwi		9.0 (MHz)	
Receiver System Receiver Noise F	Figure	9.5 (dB) 7.9 (dB)	
Minimum Detecta			
Elevation Pattern	ATCRBS	open arrav	
Elevation Tilt An		0.0 (deg)	
Ant. Rotation Rat		12.5 (rpm)	
Pulse Length		0.80 (usec)	
Vertical Polarizat	tion	, , ,	
STC Exponent		2.0	
STC Depth		36.0 (dB)	
STC Range Step		1.0 (nmi)	
ANSPONDER P			
Peak Transmit Po		250.0 (W)	
Receiver Bandwi		15.0 (MHz)	
Minimum Trigger		-69.0 (dBm)	
Reply Pulse Widt	h	0.45 (usec)	
Receiver Loss		4.0 (dB)	
Receiver Noise F	rigure	7.9 (dB)	

Boeing 767 400ER Tail Only TW-W_767_TO_320.rcs Bypass Taxiway "W" Station 320+00 (Point 27) N30° 29' 41.81", W81° 41' 29.67" Ground Elevation 24.83' MSL Centroid Elevation 67.07' MSL (+42.24' AGL)

Position Name: JAX ASR9/Mode S Latitude: 30:29:35.97 Longitude: -81:41:33.61 Beacon Height MSL: 92.3 FT Beacon Height AGL: 63.6 FT

INT

		LEGEND
	Mode Inline Inline False	le Change Retum Change Source Retum Source Target Retum Target Source
TERROGAT(Peak Transm Receiver Bai	it Power	ETERS 200.0 (W) 9.0 (MHz)
Receiver Sy: Receiver No Minimum Def	ise Figure	9.5 (dB) 7.9 (dB) nal -80.0 (dBm)
	ttern ATCI Angle	RBS_open_array 0.0 (deg) 12.5 (rpm)
Pulse Length Vertical Pola	rization	0.80 (usec)
STC Expone STC Depth		2.0 36.0 (dB)
STC Range : ANSPONDE	r Parame	
Peak Transm Receiver Bai	ndwidth	250.0 (W) 15.0 (MHz)
Minimum Triç Reply Pulse	Width	-69.0 (dBm) 0.45 (usec)
Receiver Los Receiver No		4.0 (dB) 7.9 (dB)

Boeing 767 400ER Tail Only TW-W_767_TO_319.rcs Bypass Taxiway "W" Station 319+00 (Point 26) N30° 29' 40.83", W81° 41' 29.87" Ground Elevation 25.42' MSL Centroid Elevation 67.66' MSL (+42.24' AGL)

Position Name: JAX ASR9/Mode S Latitude: 30:29:35.97 Longitude: -81:41:33.61 Beacon Height MSL: 92.3 FT Beacon Height AGL: 63.6 FT

INT

		LEGEND	
	Mode Inline Inline False	le Change Return Change Source Return Source Target Return Target Source	
TERROGAT			
Peak Transm		200.0 (W)	
Receiver Ba		9.0 (MHz)	
Receiver Sy	stem Loss	9.5 (dB)	
Receiver No	ise Figure	7.9 (dB)	
Minimum Def			
Elevation Fa	Lenn MIC	RBS_open_array 0.0 (deg)	
Ant. Rotation		12.5 (rpm)	
Pulse Length		0.80 (usec)	
Vertical Pola	rization	0.00 (4000)	
STC Expone	nt	2.0	
STC Depth		36.0 (dB)	
STC Range :	Step	1.0 (nmi)	
ANSPONDE	R PARAME	TERS	
Peak Transm	it Power	250.0 (W)	
Receiver Ba		15.0 (MHz)	
Minimum Triş		-69.0 (dBm)	
Reply Pulse		0.45 (usec)	
Receiver Los		4.0 (dB)	
Receiver No	ise Figure	7.9 (dB)	

Boeing 767 400ER Tail Only TW-W_767_TO_319.rcs Bypass Taxiway "W" Station 319+00 (Point 26) N30° 29' 40.83", W81° 41' 29.87" Ground Elevation 25.42' MSL Centroid Elevation 67.66' MSL (+42.24' AGL)

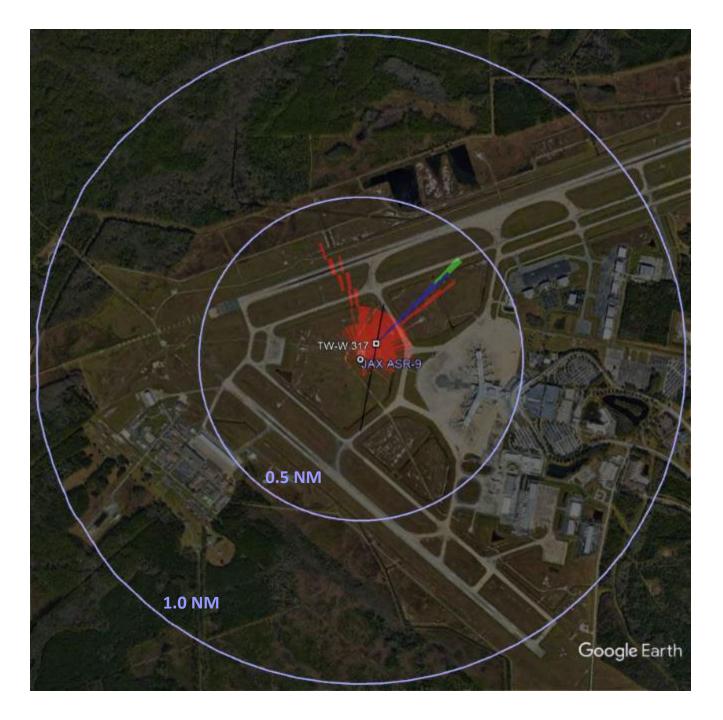
Position Name: JAX ASR9/Mode S Latitude: 30:29:35.97 Longitude: -81:41:33.61 Beacon Height MSL: 92.3 FT Beacon Height AGL: 63.6 FT

		LEGEND
	Mode Inline Inline False	ole 2 Change Return 2 Change Source Return Source 1 Target Return Target Source
TERROGATO	R PARAM	IETERS
Peak Transmi	t Power	200.0 (W)
Receiver Ban	dwidth	9.0 (MHz)
Receiver Sys	tem Loss	9.5 (dB)
Receiver Noi:	se Figure	7.9 (dB)
Minimum Dete		
Elevation Pat	tem ATC	RBS_open_array
Elevation Tilt		0.0 (deg)
Ant. Rotation	Rate	12.5 (rpm)
Pulse Length		0.80 (usec)
Vertical Polar	ization	2.0
STC Exponen	1	2.0
STC Depth STC Range S	ton	36.0 (dB) 1.0 (nmi)
ANSPONDER		
Peak Transmi		250.0 (W)
Receiver Ban		15.0 (MHz)
Minimum Trig		-69.0 (dBm)
Reply Pulse \		0.45 (usec)
Receiver Los		4.0 (dB)
Receiver Noi:		7.9 (dB)
	3	()


Boeing 767 400ER Tail Only TW-W_767_TO_318.rcs Bypass Taxiway "W" Station 318+00 (Point 25) N30° 29' 39.86", W81° 41' 30.08" Ground Elevation 26.01' MSL Centroid Elevation 68.25' MSL (+42.24' AGL)

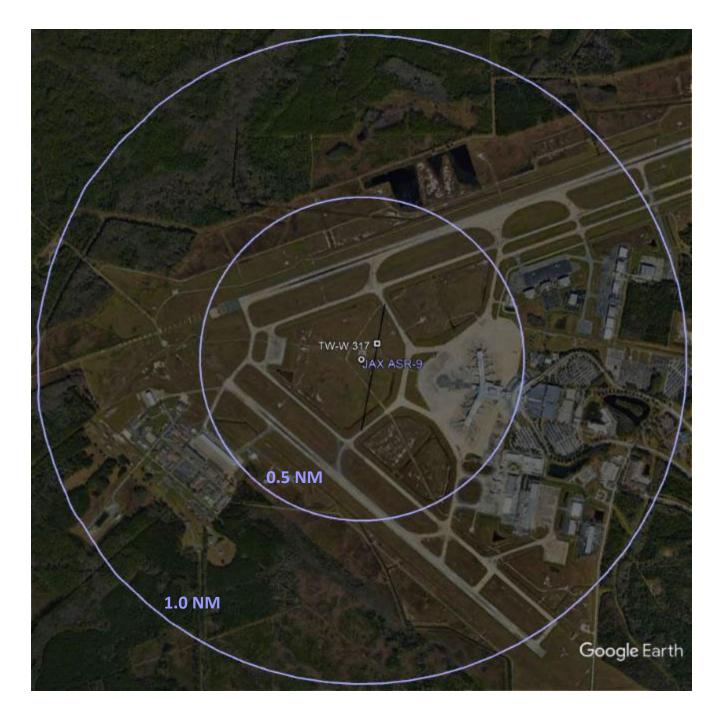
Multiple Mode Change Retum Mode Change Source Inline Retum Inline Retum Inline Source False Target Retum False Target Retum False Target Source INTERROGATOR PARAMETERS Peak Transmit Power 200.0 (W) Receiver Bandwidth 9.0 (MHz) Receiver System Loss 9.5 (dB) Receiver Noise Figure 7.9 (dB) Minimum Detectable Signal -80.0 (dBm) Elevation Pattern ATCRBS_open_array Elevation Tilt Angle 0.0 (deg) Ant. Rotation Rate 12.5 (rpm) Pulse Length 0.80 (usec) Vertical Polarization STC Exponent 2.0 STC Copth 36.0 (dB) STC Range Step 1.0 (nmi) TRANSPONDER PARAMETERS Peak Transmit Power 250.0 (W) Receiver Bandwidth 15.0 (MHz) Minimum Trigger Level -69.0 (dBm) Reply Pulse Width 0.45 (usec)		
Mode Change Retum Mode Change Source Inline Retum Inline Source False Target Retum False Target Retum False Target Source INTERROGATOR PARAMETERS Peak Transmit Power 200.0 (W) Receiver Bandwidth 9.0 (MHz) Receiver Bandwidth 9.0 (MHz) Receiver System Loss 9.5 (dB) Receiver System Loss 9.5 (dB) Minimum Detectable Signal -80.0 (dBm) Elevation Pattern ATCRBS_open_array Elevation Tilt Angle 0.0 (deg) Ant. Rotation Rate 12.5 (rpm) Pulse Length 0.80 (usec) Vertical Polarization STC Exponent 2.0 STC Depth 36.0 (dB) STC Range Step 1.0 (nmi) TRANSPONDER PARAMETERS Peak Transmit Power 250.0 (W) Receiver Bandwidth 15.0 (MHz) Minimum Trigger Level -69.0 (dBm) Reply Pulse Width 0.45 (usec)		LEGEND
Peak Transmit Power 200.0 (W) Receiver Bandwidth 9.0 (MHz) Receiver System Loss 9.5 (dB) Receiver Noise Figure 7.9 (dB) Minimum Detectable Signal -80.0 (dBm) Elevation Pattern ATCRBS_open_array Elevation Tilt Angle 0.0 (deg) Ant. Rotation Rate 12.5 (rpm) Pulse Length 0.80 (usec) Vertical Polarization STC Exponent STC Depth 36.0 (dB) STC Range Step 1.0 (nmi) TRANSPONDER PARAMETERS Peak Transmit Power 250.0 (W) Receiver Bandwidth 15.0 (MHz) Minimum Trigger Level -69.0 (dBm) Reply Pulse Width 0.45 (usec)	M M M M M M M M M M M M M M M M M M M	lode Change Return lode Change Source lline Return lline Source alse Target Return
Receiver Bandwidth 9.0 (MHz) Receiver System Loss 9.5 (dB) Receiver Noise Figure 7.9 (dB) Minimum Detectable Signal -80.0 (dBm) Elevation Pattern ATCRBS_open_array Elevation Tilt Angle 0.0 (deg) Ant. Rotation Rate 12.5 (rpm) Pulse Length 0.80 (usec) Vertical Polarization STC Exponent STC Depth 36.0 (dB) STC Range Step 1.0 (nmi) TRANSPONDER PARAMETERS Peak Transmit Power 250.0 (W) Receiver Bandwidth 15.0 (MHz) Minimum Trigger Level -69.0 (dBm) Reply Pulse Width 0.45 (usec)	INTERROGATOR PAR	RAMETERS
Receiver Loss 4.0 (dB) Receiver Noise Figure 7.9 (dB)	Peak Transmit Powe Receiver Bandwidth Receiver System Lo Receiver Noise Fig Minimum Detectable Elevation Pattern Elevation Tilt Angle Ant. Rotation Rate Pulse Length Vertical Polarization STC Exponent STC Depth STC Range Step TRANSPONDER PAR Peak Transmit Powe Receiver Bandwidth Minimum Trigger Le Reply Pulse Width Receiver Loss	er 200.0 (W) 9.0 (MHz) 195 9.5 (dB) 195 9.5 (dB) 201 9.5 (dB) 201 9.5 (dB) 201 9.5 (dB) 201 9.5 (dB) 12.5 (rpm) 0.80 (usec) 1.0 (nmi) AMETERS 201 36.0 (dB) 1.0 (nmi) AMETERS 201 9.0 (W) 1.15.0 (MHz) 1.25 (usec) 4.0 (dB)

Boeing 767 400ER Tail Only TW-W_767_TO_318.rcs Bypass Taxiway "W" Station 318+00 (Point 25) N30° 29' 39.86", W81° 41' 30.08" Ground Elevation 26.01' MSL Centroid Elevation 68.25' MSL (+42.24' AGL)


Position Name: JAX ASR9/Mode S Latitude: 30:29:35.97 Longitude: -81:41:33.61 Beacon Height MSL: 92.3 FT Beacon Height AGL: 63.6 FT

INT

		LEGEND	
	Mode Inline Inline False	le Change Retum Change Source Retum Source Target Retum Target Source	
TERROGAT	DR PARAM	ETERS	
Peak Transm Receiver Sys Receiver No Minimum Def Elevation Pa Elevation Till Ant. Rotation Pulse Length Vertical Pola STC Expone STC Depth STC Range 5	ndwidth stem Loss ise Figure tectable Sig ttem ATC t Angle Rate n rization nt	200.0 (W) 9.0 (MHz) 9.5 (dB) 7.9 (dB) nal -80.0 (dBm) RBS_open_array 0.0 (deg) 12.5 (rpm) 0.80 (usec) 2.0 36.0 (dB) 1.0 (nmi)	
ANSPONDE			
Peak Transm Receiver Bai Minimum Trig Reply Pulse Receiver Los Receiver No	it Power ndwidth gger Level Width ss	250.0 (W) 15.0 (MHz) -69.0 (dBm) 0.45 (usec) 4.0 (dB) 7.9 (dB)	


Boeing 767 400ER Tail Only TW-W_767_TO_317.rcs Bypass Taxiway "W" Station 317+00 (Point 24) N30° 29' 38.89", W81° 41' 30.28" Ground Elevation 26.60' MSL Centroid Elevation 68.84' MSL (+42.24' AGL)

Position Name: JAX ASR9/Mode S Latitude: 30:29:35.97 Longitude: -81:41:33.61 Beacon Height MSL: 92.3 FT Beacon Height AGL: 63.6 FT

Boeing 767 400ER Tail Only TW-W_767_TO_317.rcs Bypass Taxiway "W" Station 317+00 (Point 24) N30° 29' 38.89", W81° 41' 30.28" Ground Elevation 26.60' MSL Centroid Elevation 68.84' MSL (+42.24' AGL)

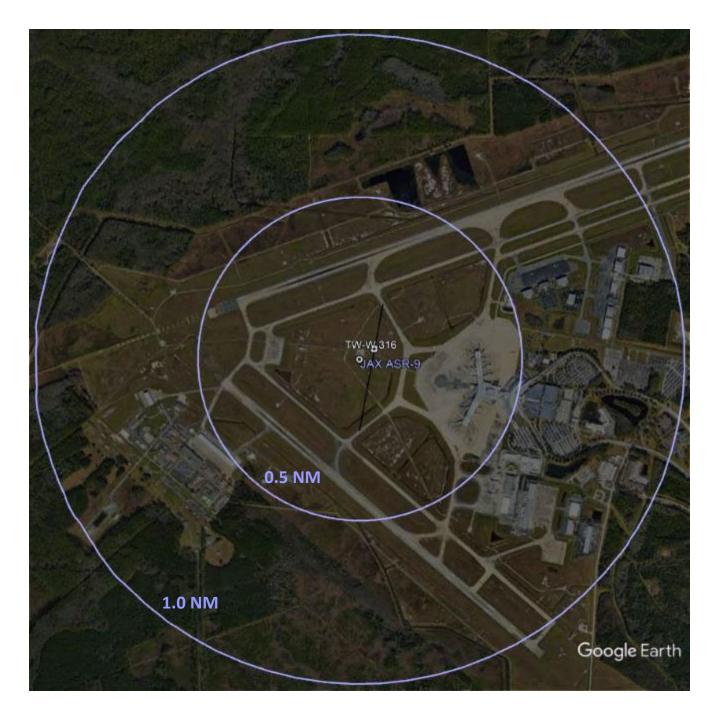


Position Name: JAX ASR9/Mode S Latitude: 30:29:35.97 Longitude: -81:41:33.61 Beacon Height MSL: 92.3 FT Beacon Height AGL: 63.6 FT

	LEGEND
	Multiple Mode Change Return Mode Change Source Inline Return Inline Source False Target Return False Target Source
INTERROGATOR P/ Peak Transmit Pox Receiver Bandwid Receiver System I Receiver Noise Fi Minimum Detectat Elevation Pattern Elevation Tilt Ang Ant. Rotation Rate Pulse Length Vertical Polarizatio STC Exponent STC Range Step TRANSPONDER PA Peak Transmit Pox Receiver Bandwid Minimum Trigger I Reply Pulse Width Receiver Loss Receiver Noise Fi	wer 200.0 (W) dth 9.0 (MHz) Loss 9.5 (dB) igure 7.9 (dB) ble Signal -80.0 (dBm) ATCRBS_open_array le 0.0 (deg) e 12.5 (rpm) 0.80 (usec) on 2.0 36.0 (dB) 1.0 (nmi) ARAMETERS wer 250.0 (W) dth 15.0 (MHz) Level -69.0 (dBm) h 0.45 (usec) 4.0 (dB)

Boeing 767 400ER Tail Only TW-W_767_TO_316.rcs Bypass Taxiway "W" Station 316+00 (Point 23) N30° 29' 37.91", W81° 41' 30.49" Ground Elevation 27.07' MSL Centroid Elevation 69.31' MSL (+42.24' AGL)

	LEGEND
Mo Mo Inli Inli	lttiple de Change Retum de Change Source ne Retum ne Source Ise Target Retum Ise Target Source
INTERROGATOR PARA	
Peak Transmit Power	
Receiver Bandwidth	9.0 (MHz) s 9.5 (dB)
Receiver System Los Receiver Noise Figu	
Minimum Detectable	
	TCRBS_open_array
Elevation Tilt Angle	0.0 (deg)
Ant. Rotation Rate	12.5 (rpm)
Pulse Length	0.80 (usec)
Vertical Polarization	
STC Exponent	2.0
STC Depth	36.0 (dB)
STC Range Step	1.0 (nmi)
TRANSPONDER PARA	
Peak Transmit Power	
Receiver Bandwidth	15.0 (MHz)
Minimum Trigger Lev Reply Pulse Width	el -69.0 (dBm) 0.45 (usec)
Receiver Loss	4.0 (dB)
Receiver Noise Figur	
	· · · · (40)


Boeing 767 400ER Tail Only TW-W_767_TO_316.rcs Bypass Taxiway "W" Station 316+00 (Point 23) N30° 29' 37.91", W81° 41' 30.49" Ground Elevation 27.07' MSL Centroid Elevation 69.31' MSL (+42.24' AGL)

	LEGEND	
	Multiple Mode Change Retum Mode Change Source Inline Retum Inline Source False Target Retum False Target Source	
INTERROGATOR P Peak Transmit Po Receiver Bandwi Receiver System Receiver Noise F Minimum Detecta Elevation Tilt Ang Ant. Rotation Rate Pulse Length Vertical Polarizat STC Exponent STC Depth STC Range Step TRANSPONDER P/ Peak Transmit Po Receiver Bandwi Minimum Trigger Reply Pulse Widt Receiver Loss Receiver Noise F	ower 200.0 (W) ridth 9.0 (MHz) h Loss 9.5 (dB) Figure 7.9 (dB) able Signal -80.0 (dBm) n ATCRBS_open_array igle 0.0 (deg) te 12.5 (rpm) 0.80 (usec) ition 2.0 36.0 (dB) > 1.0 (nmi) PARAMETERS ower 250.0 (W) ridth 15.0 (MHz) r Level -69.0 (dBm) 1th 0.45 (usec) 4.0 (dB) 4.0 (dB)	

Boeing 767 400ER Tail Only TW-W_767_TO_316.rcs Bypass Taxiway "W" Station 316+00 (Point 23) N30° 29' 37.91", W81° 41' 30.49" Ground Elevation 27.07' MSL Centroid Elevation 69.31' MSL (+42.24' AGL)

Boeing 767 400ER Tail Only TW-W_767_TO_315.rcs Bypass Taxiway "W" Station 315+00 (Point 22) N30° 29' 36.94", W81° 41' 30.69" Ground Elevation 27.31' MSL Centroid Elevation 69.55' MSL (+42.24' AGL)

	LEGEND
	Multiple Mode Change Retum Mode Change Source Inline Retum Inline Source False Target Retum False Target Source
INTERROGATOR P Peak Transmit Po Receiver Bandwi Receiver System Receiver Noise F Minimum Detecta Elevation Pattern Elevation Pattern Elevation Tilt Any Ant. Rotation Rab Pulse Length Vertical Polarizat STC Exponent STC Depth STC Range Step TRANSPONDER P. Peak Transmit Po Receiver Bandwi Minimum Trigger Reply Pulse Widt Receiver Loss Receiver Noise F	ower 200.0 (W) idth 9.0 (MHz) Loss 9.5 (dB) Figure 7.9 (dB) able Signal -80.0 (dBm) h ATCRBS_open_array gle 0.0 (deg) le 12.5 (rpm) 0.80 (usec) tion 2.0 36.0 (dB) 1.0 (nmi) ARAMETERS ower 250.0 (W) idth 15.0 (MHz) Level -69.0 (dBm) th 0.45 (usec) 4.0 (dB)

Boeing 767 400ER Tail Only TW-W_767_TO_315.rcs Bypass Taxiway "W" Station 315+00 (Point 22) N30° 29' 36.94", W81° 41' 30.69" Ground Elevation 27.31' MSL Centroid Elevation 69.55' MSL (+42.24' AGL)

	LEGEND
	Multiple Mode Change Retum Mode Change Source Inline Retum Inline Source False Target Retum False Target Source
INTERROGATOR P Peak Transmit Po Receiver Bandwi Receiver System Receiver Noise F Minimum Detecta Elevation Tilt Ang Ant. Rotation Rate Pulse Length Vertical Polarizat STC Exponent STC Depth STC Range Step TRANSPONDER P/ Peak Transmit Po Receiver Bandwi Minimum Trigger Reply Pulse Widt Receiver Loss Receiver Noise F	ower 200.0 (W) idth 9.0 (MHz) Loss 9.5 (dB) Figure 7.9 (dB) able Signal -80.0 (dBm) h ATCRBS_open_array gle 0.0 (deg) le 12.5 (rpm) 0.80 (usec) tion 2.0 36.0 (dB) 1.0 (nmi) ARAMETERS ower 250.0 (W) idth 15.0 (MHz) Level -69.0 (dBm) th 0.45 (usec) 4.0 (dB)

Boeing 767 400ER Tail Only TW-W_767_TO_315.rcs Bypass Taxiway "W" Station 315+00 (Point 22) N30° 29' 36.94", W81° 41' 30.69" Ground Elevation 27.31' MSL Centroid Elevation 69.55' MSL (+42.24' AGL)

	LEGEND	
	Multiple Mode Change F Mode Change S Inline Return Inline Source False Target Re False Target So	Source turn
INTERROGATOR P Peak Transmit Po Receiver Bandwi Receiver System Receiver Noise F Minimum Detecta Elevation Pattern Elevation Tilt Ang Ant. Rotation Rats Pulse Length Vertical Polarizat STC Exponent STC Depth STC Range Step TRANSPONDER P/ Peak Transmit Po Receiver Bandwi Minimum Trigger Reply Pulse Widt Receiver Loss Receiver Noise F	wer 200 dth 9.0 Loss 9.5 Figure 7.5 ble Signal -80. ATCRBS_oper gle 0.0 e 12. 0.8 ion 2.0 36. 1.0 ARAMETERS wer 250 dth 15. Level -69. h 0.4. 4.0) (deg) 5 (rpm) 0 (usec)

Boeing 767 400ER Tail Only TW-W_767_TO_314.rcs Bypass Taxiway "W" Station 314+00 (Point 20) N30° 29' 35.96", W81° 41' 30.89" Ground Elevation 27.32' MSL Centroid Elevation 69.56' MSL (+42.24' AGL)

	LEGEND
Mode Inline Inline False	le Change Retum Change Source Retum Source Target Retum Target Source
INTERROGATOR PARAM	ETERS
Peak Transmit Power	200.0 (W)
Receiver Bandwidth	9.0 (MHz)
Receiver System Loss	9.5 (dB)
Receiver Noise Figure	7.9 (dB)
Minimum Detectable Sig	nal -80.0 (dBm)
Elevation Pattern ATC Elevation Tilt Angle	
Ant. Rotation Rate	0.0 (deg) 12.5 (rpm)
Pulse Length	0.80 (usec)
Vertical Polarization	0.00 (4000)
STC Exponent	2.0
STC Depth	36.0 (dB)
STC Range Step	1.0 (nmi)
TRANSPONDER PARAME	TERS
Peak Transmit Power	250.0 (W)
Receiver Bandwidth	15.0 (MHz)
Minimum Trigger Level	-69.0 (dBm)
Reply Pulse Width	0.45 (usec)
Receiver Loss	4.0 (dB)
Receiver Noise Figure	7.9 (dB)

Boeing 767 400ER Tail Only TW-W_767_TO_314.rcs Bypass Taxiway "W" Station 314+00 (Point 20) N30° 29' 35.96", W81° 41' 30.89" Ground Elevation 27.32' MSL Centroid Elevation 69.56' MSL (+42.24' AGL)

L	.EGEND
Mode C Inline R Inline S False T	Change Return Change Source eturn
INTERROGATOR PARAME	TERS
Peak Transmit Power	200.0 (W)
Receiver Bandwidth	9.0 (MHz)
Receiver System Loss	9.5 (dB)
Receiver Noise Figure	7.9 (dB)
Minimum Detectable Sign Elevation Pattern ATCRI Elevation Tilt Angle	
Ant. Rotation Rate	12.5 (rpm)
Pulse Length	0.80 (usec)
Vertical Polarization STC Exponent	2.0
STC Depth	36.0 (dB)
STC Range Step	1.0 (nmi)
TRANSPONDER PARAMET	ERS
Peak Transmit Power	250.0 (W)
Receiver Bandwidth	15.0 (MHz)
Minimum Trigger Level	-69.0 (dBm)
Reply Pulse Width	0.45 (usec)
Receiver Loss	4.0 (dB)
Receiver Noise Figure	7.9 (dB)


Boeing 767 400ER Tail Only TW-W_767_TO_314.rcs Bypass Taxiway "W" Station 314+00 (Point 20) N30° 29' 35.96", W81° 41' 30.89" Ground Elevation 27.32' MSL Centroid Elevation 69.56' MSL (+42.24' AGL)

Position Name: JAX ASR9/Mode S Latitude: 30:29:35.97 Longitude: -81:41:33.61 Beacon Height MSL: 92.3 FT Beacon Height AGL: 63.6 FT

Boeing 767 400ER Tail Only TW-W_767_TO_313.rcs Bypass Taxiway "W" Station 313+00 (Point 19) N30° 29' 34.99", W81° 41' 31.10" Ground Elevation 27.10' MSL Centroid Elevation 69.34' MSL (+42.24' AGL)

	LEGEND
	Multiple Mode Change Return Mode Change Source Inline Return Inline Source False Target Return False Target Source
INTERROGATOR P/ Peak Transmit Pos Receiver Bandwid Receiver System I Receiver System I Receiver Noise Fi Minimum Detectat Elevation Pattern Elevation Pattern Elevation Tilt Ang Ant. Rotation Rate Pulse Length Vertical Polarizatie STC Exponent STC Depth STC Range Step TRANSPONDER PA Peak Transmit Pos Receiver Bandwid Minimum Trigger L Reply Pulse Width Receiver Loss Receiver Noise Fi	ver 200.0 (W) th 9.0 (MHz) Loss 9.5 (dB) gure 7.9 (dB) ole Signal -80.0 (dBm) ATCRBS_open_array le 0.0 (deg) 12.5 (rpm) 0.80 (usec) on 2.0 36.0 (dB) 1.0 (nmi) RAMETERS ver 250.0 (W) th 15.0 (MHz) Level -69.0 (dBm) 0.45 (usec) 4.0 (dB)


Boeing 767 400ER Tail Only TW-W_767_TO_313.rcs Bypass Taxiway "W" Station 313+00 (Point 19) N30° 29' 34.99", W81° 41' 31.10" Ground Elevation 27.10' MSL Centroid Elevation 69.34' MSL (+42.24' AGL)

	LEGEND
	Multiple Mode Change Return Mode Change Source Inline Return Inline Source False Target Return False Target Source
INTERROGATOR P Peak Transmit Po Receiver Bandwik Receiver System Receiver System Receiver Noise F Minimum Detecta Elevation Tilt Ang Ant. Rotation Rate Pulse Length Vertical Polarizati STC Exponent STC Depth STC Range Step TRANSPONDER P/ Peak Transmit Po Receiver Bandwik Minimum Trigger Reply Pulse Widt Receiver Loss Receiver Noise F	wer 200.0 (W) dth 9.0 (MHz) Loss 9.5 (dB) Figure 7.9 (dB) ible Signal -80.0 (dBm) ATCRBS_open_array gle 0.0 (deg) e 12.5 (rpm) 0.80 (usec) ion 2.0 36.0 (dB) 1.0 (nmi) ARAMETERS wer 250.0 (W) dth 15.0 (MHz) Level -69.0 (dBm) h 0.45 (usec) 4.0 (dB)

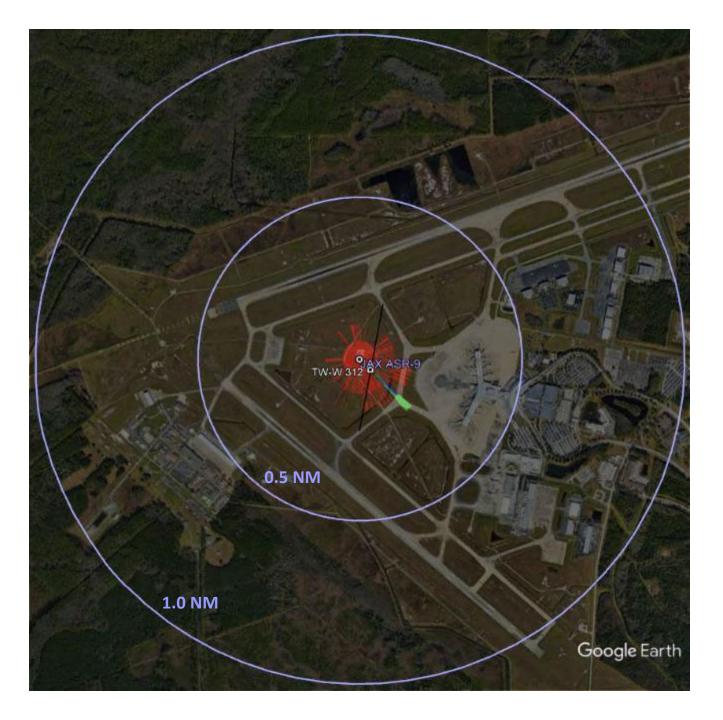
Boeing 767 400ER Tail Only TW-W_767_TO_313.rcs Bypass Taxiway "W" Station 313+00 (Point 19) N30° 29' 34.99", W81° 41' 31.10" Ground Elevation 27.10' MSL Centroid Elevation 69.34' MSL (+42.24' AGL)


Position Name: JAX ASR9/Mode S Latitude: 30:29:35.97 Longitude: -81:41:33.61 Beacon Height MSL: 92.3 FT Beacon Height AGL: 63.6 FT

INT

		LEGEND	
	Mode Inline Inline False	ole Change Return Change Source Return Source Target Return Target Source	
TERROGATO			
Peak Transm		200.0 (W)	
Receiver Ba		9.0 (MHz)	
Receiver Sys	stem Loss	9.5 (dB)	
Receiver No	ise Figure	7.9 (dB)	
Minimum Det Elevetion Pe			
Elevation Fa	Lenn MIC	RBS_open_array 0.0 (deg)	
Ant. Rotation		12.5 (rpm)	
Pulse Length		0.80 (usec)	
Vertical Pola	rization	0.00 (4000)	
STC Expone	nt	2.0	
STC Depth		36.0 (dB)	
STC Range \$	Step	1.0 (nmi)	
ANSPONDE	R PARAME	ETERS	
Peak Transm	it Power	250.0 (W)	
Receiver Ba		15.0 (MHz)	
Minimum Trig		-69.0 (dBm)	
Reply Pulse		0.45 (usec)	
Receiver Los		4.0 (dB)	
Receiver No	ise Figure	7.9 (dB)	

Boeing 767 400ER Tail Only TW-W_767_TO_312.rcs Bypass Taxiway "W" Station 312+00 (Point 18) N30° 29' 34.02", W81° 41' 31.30" Ground Elevation 26.77' MSL Centroid Elevation 69.01' MSL (+42.24' AGL)



Position Name: JAX ASR9/Mode S Latitude: 30:29:35.97 Longitude: -81:41:33.61 Beacon Height MSL: 92.3 FT Beacon Height AGL: 63.6 FT

	LEGEND
Mi Mi Ini Ini Fa	ultiple ode Change Return ode Change Source ine Return ine Source Ilse Target Return Ilse Target Source
INTERROGATOR PAR	
Peak Transmit Powe	
Receiver Bandwidth	9.0 (MHz)
Receiver System Los	
Receiver Noise Figu	
Minimum Detectable Elevation Pattern A	Signal -80.0 (dBm)
Elevation Tilt Angle	0.0 (deg)
Ant. Rotation Rate	12.5 (rpm)
Pulse Length	0.80 (usec)
Vertical Polarization	0.00 (4000)
STC Exponent	2.0
STC Depth	36.0 (dB)
STC Range Step	1.0 (nmi)
TRANSPONDER PARA	AMETERS
Peak Transmit Power	r 250.0 (W)
Receiver Bandwidth	15.0 (MHz)
Minimum Trigger Lev	
Reply Pulse Width	0.45 (usec)
Receiver Loss	4.0 (dB)
Receiver Noise Figu	re 7.9 (dB)


Boeing 767 400ER Tail Only TW-W_767_TO_312.rcs Bypass Taxiway "W" Station 312+00 (Point 18) N30° 29' 34.02", W81° 41' 31.30" Ground Elevation 26.77' MSL Centroid Elevation 69.01' MSL (+42.24' AGL)

	LEGEND
	Multiple Mode Change Retum Mode Change Source Inline Retum Inline Source False Target Retum False Target Source
INTERROGATOR PA	ARAMETERS
Peak Transmit Pov	
Receiver Bandwid	
Receiver System L	
Receiver Noise Fi	
Minimum Detectab	le Signal -80.0 (dBm) ATCRBS_open_array
Elevation Tilt Angl	
Ant. Rotation Rate	12.5 (rpm)
Pulse Length	0.80 (usec)
Vertical Polarizatio	
STC Exponent	2.0
STC Depth	36.0 (dB)
STC Range Step	1.0 (nmí)
TRANSPONDER PA	RAMETERS
Peak Transmit Pov	
Receiver Bandwid	
Minimum Trigger L	
Reply Pulse Width	
Receiver Loss	4.0 (dB)
Receiver Noise Fi	gure 7.9 (dB)

Boeing 767 400ER Tail Only TW-W_767_TO_312.rcs Bypass Taxiway "W" Station 312+00 (Point 18) N30° 29' 34.02", W81° 41' 31.30" Ground Elevation 26.77' MSL Centroid Elevation 69.01' MSL (+42.24' AGL)

LEGEND	
Multiple Mode Change Return Mode Change Source Inline Return Inline Source False Target Return False Target Source	
INTERROGATOR PARAMETERS Peak Transmit Power 200.0 (W) Receiver Bandwidth 9.0 (MHz) Receiver System Loss 9.5 (dB) Receiver Noise Figure 7.9 (dB) Minimum Detectable Signal -60.0 (dBm) Elevation Pattern ATCRBS_open_array Elevation Tilt Angle 0.0 (deg) Ant. Rotation Rate 12.5 (rpm) Pulse Length 0.80 (usec) Vertical Polarization STC Exponent 2.0 STC Depth 36.0 (dB) STC Range Step 1.0 (nmi) TRANSPONDER PARAMETERS Peak Transmit Power 250.0 (W) Receiver Bandwidth 15.0 (MHz) Minimum Trigger Level -69.0 (dBm) Reply Pulse Width 0.45 (usec) Receiver Loss 4.0 (dB) Receiver Noise Figure 7.9 (dB)	


Boeing 767 400ER Tail Only TW-W_767_TO_311.rcs Bypass Taxiway "W" Station 311+00 (Point 17) N30° 29' 33.04", W81° 41' 31.50" Ground Elevation 26.43' MSL Centroid Elevation 68.67' MSL (+42.24' AGL)

	LEGEND
	Multiple Mode Change Retum Mode Change Source Inline Retum Inline Source False Target Retum False Target Source
INTERROGATOR PA	ARAMETERS
Peak Transmit Pov	
Receiver Bandwid	
Receiver System L	
Receiver Noise Fi	
Minimum Detectab	le Signal -80.0 (dBm) ATCRBS_open_array
Elevation Tilt Angl	
Ant. Rotation Rate	12.5 (rpm)
Pulse Length	0.80 (usec)
Vertical Polarizatio	
STC Exponent	2.0
STC Depth	36.0 (dB)
STC Range Step	1.0 (nmí)
TRANSPONDER PA	RAMETERS
Peak Transmit Pov	
Receiver Bandwid	
Minimum Trigger L	
Reply Pulse Width	
Receiver Loss	4.0 (dB)
Receiver Noise Fi	gure 7.9 (dB)

Boeing 767 400ER Tail Only TW-W_767_TO_311.rcs Bypass Taxiway "W" Station 311+00 (Point 17) N30° 29' 33.04", W81° 41' 31.50" Ground Elevation 26.43' MSL Centroid Elevation 68.67' MSL (+42.24' AGL)

	LEGEND
Mo Mo Inlir Fal	ttiple de Change Retum de Change Source ne Retum ne Source se Target Retum se Target Source
INTERROGATOR PARA	
Peak Transmit Power	200.0 (W)
Receiver Bandwidth	9.0 (MHz)
Receiver System Los:	
Receiver Noise Figur	
Minimum Detectable 3	
Elevation Pattern A1	
Elevation Tilt Angle	0.0 (deg)
Ant. Rotation Rate	12.5 (rpm)
Pulse Length	0.80 (usec)
Vertical Polarization	
STC Exponent	2.0
STC Depth	36.0 (dB)
STC Range Step	1.0 (nmi)
TRANSPONDER PARA	
Peak Transmit Power	250.0 (W)
Receiver Bandwidth	15.0 (MHz)
Minimum Trigger Leve	
Reply Pulse Width	0.45 (usec)
Receiver Loss	4.0 (dB)
Receiver Noise Figur	e 7.9 (dB)

Boeing 767 400ER Tail Only TW-W_767_TO_311.rcs Bypass Taxiway "W" Station 311+00 (Point 17) N30° 29' 33.04", W81° 41' 31.50" Ground Elevation 26.43' MSL Centroid Elevation 68.67' MSL (+42.24' AGL)

	LEGEND
M M In In F	ultiple ode Change Retum ode Change Source line Retum line Source alse Target Retum alse Target Source
INTERROGATOR PAR	AMETERS
Peak Transmit Powe	er 200.0 (W)
Receiver Bandwidth	
Receiver System Lo	
Receiver Noise Figu	
Minimum Detectable	
Elevation Tilt Angle	ATCRBS_open_array 0.0 (deg)
Ant. Rotation Rate	12.5 (rpm)
Pulse Length	0.80 (usec)
Vertical Polarization	
STC Exponent	2.0
STC Depth	36.0 (dB)
STC Range Step	1.0 (nmí)
TRANSPONDER PAR	AMETERS
Peak Transmit Powe	
Receiver Bandwidth	
Minimum Trigger Le	
Reply Pulse Width	0.45 (usec)
Receiver Loss	4.0 (dB)
Receiver Noise Fig	ure 7.9 (dB)

RSS BSAT Analysis: 1.0 NM Range 50 to 750 FT MSL

Boeing 767 400ER Tail Only TW-W_767_TO_310.rcs Bypass Taxiway "W" Station 310+00 (Point 16) N30° 29' 32.07", W81° 41' 31.71" Ground Elevation 26.10' MSL Centroid Elevation 68.34' MSL (+42.24' AGL)

	LEGEND
□ M ■ M □ In ■ F	fultiple fode Change Return fode Change Source Iline Return Iline Source alse Target Return alse Target Source
INTERROGATOR PAR	
Peak Transmit Powe	er 200.0 (W)
Receiver Bandwidth	n 9.0 (MHz)
Receiver System Lo	
Receiver Noise Fig	
Minimum Detectable	
	ATCRBS_open_array
Elevation Tilt Angle	
Ant. Rotation Rate	12.5 (rpm)
Pulse Length	0.80 (usec)
Vertical Polarization	
STC Exponent	2.0
STC Depth	36.0 (dB)
STC Range Step TRANSPONDER PAR	1.0 (nmi)
Peak Transmit Powe	i iiiiia i an i an i an i an i an i an
Receiver Bandwidth	
Minimum Trigger Le	
Reply Pulse Width	0.45 (usec)
Receiver Loss	4.0 (dB)
Receiver Noise Fig	

RSS BSAT Analysis: 1.0 NM Range 750 to 4000 FT MSL

Boeing 767 400ER Tail Only TW-W_767_TO_310.rcs Bypass Taxiway "W" Station 310+00 (Point 16) N30° 29' 32.07", W81° 41' 31.71" Ground Elevation 26.10' MSL Centroid Elevation 68.34' MSL (+42.24' AGL)

	LEGEND
M M In In Fa	ultiple ode Change Retum ode Change Source line Retum line Source alse Target Retum alse Target Source
INTERROGATOR PAR	
Peak Transmit Powe	
Receiver Bandwidth	
Receiver System Lo Receiver Noise Figu	
Minimum Detectable	
Elevation Pattern /	ATCRBS_open_array
Elevation Tilt Angle	0.0 (deg)
Ant. Rotation Rate	12.5 (rpm)
Pulse Length	0.80 (usec)
Vertical Polarization	
STC Exponent	2.0
STC Depth	36.0 (dB)
STC Range Step	1.0 (nmi)
TRANSPONDER PAR	
Peak Transmit Powe	
Receiver Bandwidth	
Minimum Trigger Lev Beniu Bules Width	
Reply Pulse Width Receiver Loss	0.45 (usec)
Receiver Loss Receiver Noise Figu	4.0 (dB) are 7.9 (dB)
neconor nero rige	10 (00)

RSS BSAT Analysis: 1.0 NM Range 50 to 750 FT MSL

Boeing 767 400ER Tail Only TW-W_767_TO_309.rcs Bypass Taxiway "W" Station 309+00 (Point 15) N30° 29' 31.09", W81° 41' 31.91" Ground Elevation 25.76' MSL Centroid Elevation 68.00' MSL (+42.24' AGL)



	LEGEND
	Multiple Mode Change Return Mode Change Source Inline Return Inline Source False Target Return False Target Source
INTERROGATOR P/ Peak Transmit Po Receiver Bandwid Receiver System I Receiver Noise Fi Minimum Detectat Elevation Pattern Elevation Pattern Elevation Rate Pulse Length Vertical Polarizatio	wer 200.0 (W) dth 9.0 (MHz) Loss 9.5 (dB) igure 7.9 (dB) ole Signal -80.0 (dBm) ATCRBS_open_array Ie 0.0 (deg) e 12.5 (rpm) 0.80 (usec)
STC Exponent STC Depth STC Range Step TRANSPONDER PA Peak Transmit Pos Receiver Bandwid Minimum Trigger L Reply Pulse Width Receiver Loss Receiver Noise Fi	wer 250.0 (W) tth 15.0 (MHz) Level -69.0 (dBm) n 0.45 (usec) 4.0 (dB)

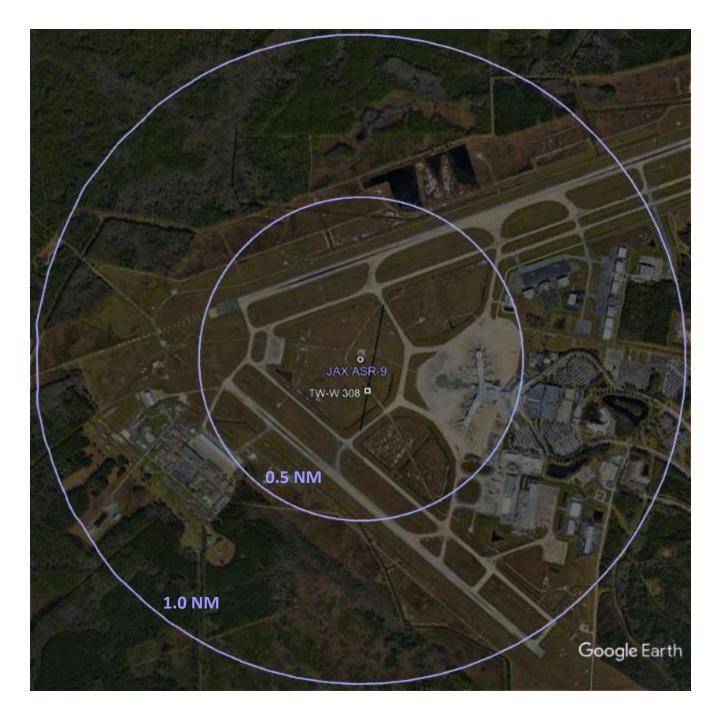
RSS BSAT Analysis: 1.0 NM Range 750 to 4000 FT MSL

Boeing 767 400ER Tail Only TW-W_767_TO_309.rcs Bypass Taxiway "W" Station 309+00 (Point 15) N30° 29' 31.09", W81° 41' 31.91" Ground Elevation 25.76' MSL Centroid Elevation 68.00' MSL (+42.24' AGL)

	LEGEND
□ M ■ M □ In ■ F	tultiple tode Change Return tode Change Source lline Return lline Source alse Target Return alse Target Source
INTERROGATOR PAR	RAMETERS
Peak Transmit Powe	
Receiver Bandwidth	
Receiver System Lo	
Receiver Noise Fig	
Minimum Detectable	e Signal -80.0 (dBm)
	ATCRBS_open_array
Elevation Tilt Angle Ant. Rotation Rate	0.0 (deg)
Pulse Length	12.5 (rpm) 0.80 (usec)
Vertical Polarization	
STC Exponent	2.0
STC Depth	36.0 (dB)
STC Range Step	1.0 (nmí)
TRANSPONDER PAR	AMETERS
Peak Transmit Powe	er 250.0 (W)
Receiver Bandwidth	
Minimum Trigger Le	
Reply Pulse Width	0.45 (usec)
Receiver Loss	4.0 (dB)
Receiver Noise Fig	ure 7.9 (dB)

RSS BSAT Analysis: 1.0 NM Range 50 to 750 FT MSL

Boeing 767 400ER Tail Only TW-W_767_TO_308.rcs Bypass Taxiway "W" Station 308+00 (Point 14) N30° 29' 30.12", W81° 41' 32.12" Ground Elevation 25.43' MSL Centroid Elevation 67.67' MSL (+42.24' AGL)

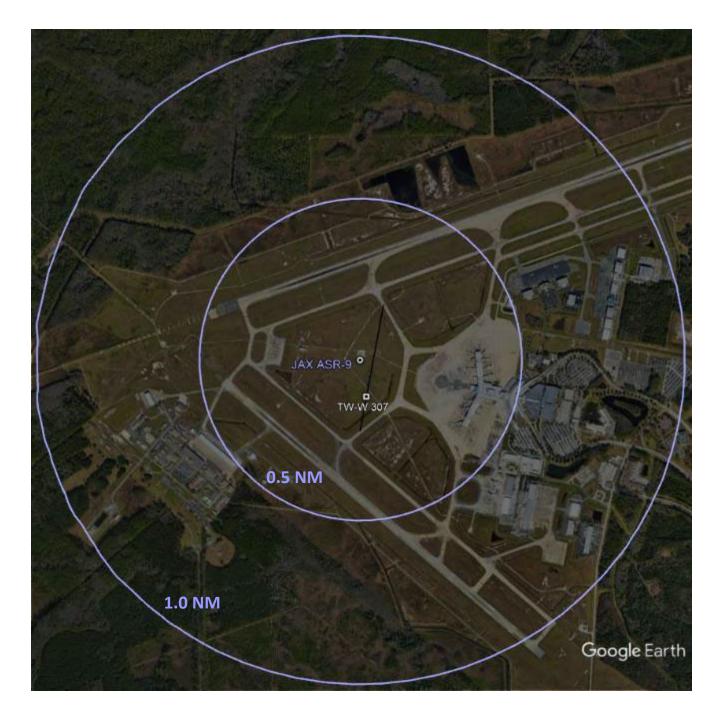


Position Name: JAX ASR9/Mode S Latitude: 30:29:35.97 Longitude: -81:41:33.61 Beacon Height MSL: 92.3 FT Beacon Height AGL: 63.6 FT

RSS BSAT Analysis: 1.0 NM Range 750 to 4000 FT MSL

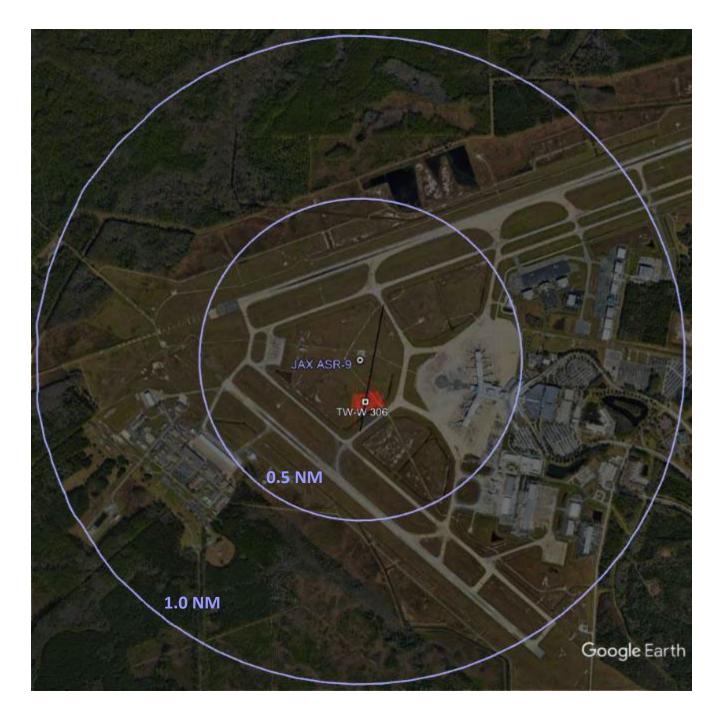
Boeing 767 400ER Tail Only TW-W_767_TO_308.rcs Bypass Taxiway "W" Station 308+00 (Point 14) N30° 29' 30.12", W81° 41' 32.12" Ground Elevation 25.43' MSL Centroid Elevation 67.67' MSL (+42.24' AGL)

RSS BSAT Analysis: 1.0 NM Range 50 to 500 FT MSL


Boeing 767 400ER Tail Only TW-W_767_TO_307.rcs Bypass Taxiway "W" Station 307+00 (Point 13) N30° 29' 29.15", W81° 41' 32.32" Ground Elevation 25.09' MSL Centroid Elevation 67.33' MSL (+42.24' AGL)

RSS BSAT Analysis: 1.0 NM Range 500 to 4000 FT MSL

Boeing 767 400ER Tail Only TW-W_767_TO_307.rcs Bypass Taxiway "W" Station 307+00 (Point 13) N30° 29' 29.15", W81° 41' 32.32" Ground Elevation 25.09' MSL Centroid Elevation 67.33' MSL (+42.24' AGL)

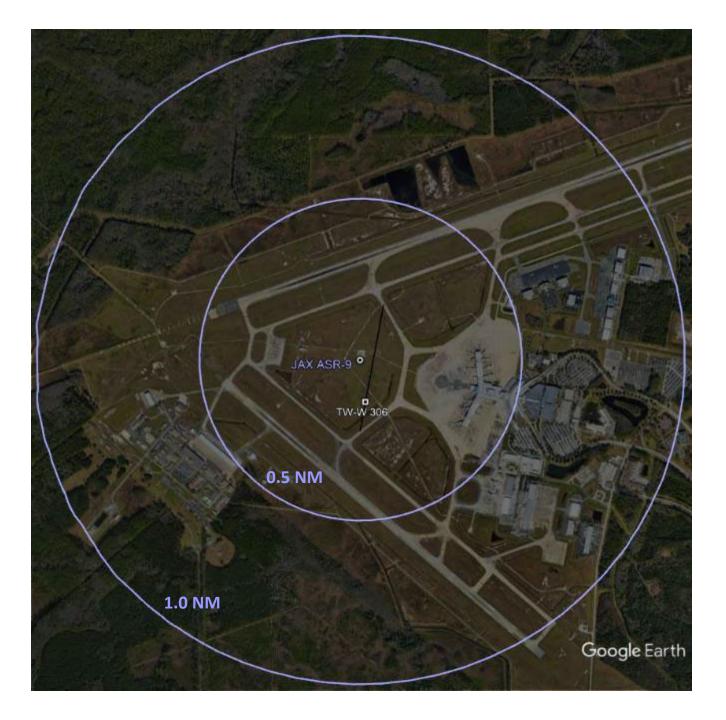


	LEGEND
M M In In Fa	ultiple ode Change Retum ode Change Source line Retum line Source alse Target Retum alse Target Source
INTERROGATOR PAR	
Peak Transmit Powe	
Receiver Bandwidth	
Receiver System Lo Receiver Noise Figu	
Minimum Detectable	
Elevation Pattern /	ATCRBS_open_array
Elevation Tilt Angle	0.0 (deg)
Ant. Rotation Rate	12.5 (rpm)
Pulse Length	0.80 (usec)
Vertical Polarization	
STC Exponent	2.0
STC Depth	36.0 (dB)
STC Range Step	1.0 (nmi)
TRANSPONDER PAR	
Peak Transmit Powe	
Receiver Bandwidth	
Minimum Trigger Lev Beniu Bules Width	
Reply Pulse Width Receiver Loss	0.45 (usec)
Receiver Loss Receiver Noise Figu	4.0 (dB) are 7.9 (dB)
neconor nero rige	10 (00)

RSS BSAT Analysis: 1.0 NM Range 50 to 500 FT MSL

Boeing 767 400ER Tail Only TW-W_767_TO_306.rcs Bypass Taxiway "W" Station 306+00 (Point 12) N30° 29' 28.17", W81° 41' 32.52" Ground Elevation 24.76' MSL Centroid Elevation 67.00' MSL (+42.24' AGL)

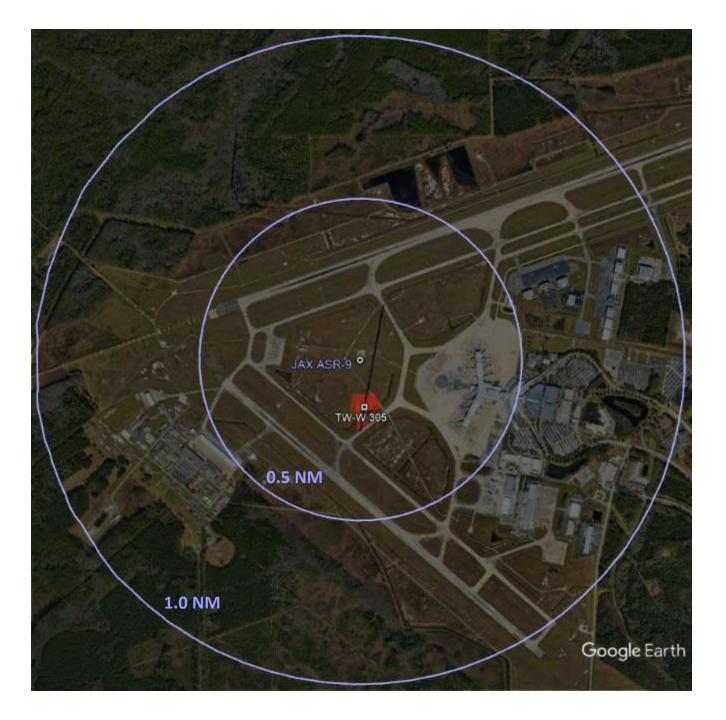
Position Name: JAX ASR9/Mode S Latitude: 30:29:35.97 Longitude: -81:41:33.61 Beacon Height MSL: 92.3 FT Beacon Height AGL: 63.6 FT


INT

[LEGEND
	Mode Inline Inline False	ole 9 Change Return 9 Change Source Return 9 Source 9 Target Return 9 Target Source
TERROGATO	R PARAM	IETERS
Peak Transm		200.0 (W)
Receiver Bar		9.0 (MHz)
Receiver Sys		9.5 (dB)
Receiver Noi		7.9 (dB)
Minimum Det	ectable Sig	gnal -80.0 (dBm)
		RBS_open_array
Elevation Tilt Ant. Rotation		0.0 (deg)
Pulse Length		12.5 (rpm) 0.80 (usec)
Vertical Pola	rization	0.00 (usec)
STC Expone	nt	2.0
STC Depth		36.0 (dB)
STC Range \$	Step	1.0 (nmi)
ANSPONDE		
Peak Transm		250.0 (W)
Receiver Bar	ndwidth	15.0 (MHz)
Minimum Trig	ger Level	-69.0 (dBm)
Reply Pulse	Width	0.45 (usec)
Receiver Los	s	4.0 (dB)
Receiver Noi	se Figure	7.9 (dB)

RSS BSAT Analysis: 1.0 NM Range 500 to 4000 FT MSL

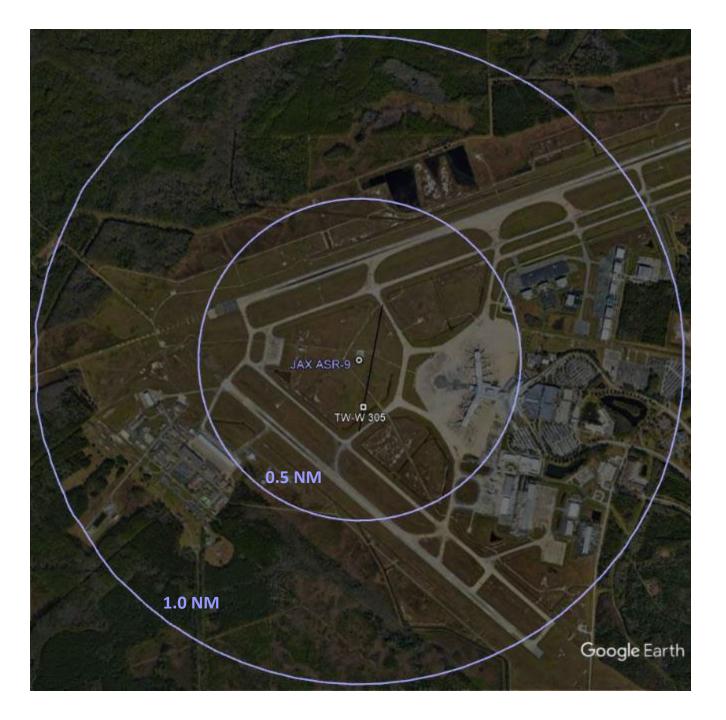
Boeing 767 400ER Tail Only TW-W_767_TO_306.rcs Bypass Taxiway "W" Station 306+00 (Point 12) N30° 29' 28.17", W81° 41' 32.52" Ground Elevation 24.76' MSL Centroid Elevation 67.00' MSL (+42.24' AGL)


Position Name: JAX ASR9/Mode S Latitude: 30:29:35.97 Longitude: -81:41:33.61 Beacon Height MSL: 92.3 FT Beacon Height AGL: 63.6 FT

	LEGEN	VD.
	Multiple Mode Chang Mode Chang Inline Retum Inline Source False Target False Target	e Source Return
INTERROGATOR P Peak Transmit Po Receiver Bandwi Receiver System Receiver Noise F Minimum Detecta Elevation Pattern Elevation Tilt Ang Ant. Rotation Rate Pulse Length Vertical Polarizati STC Exponent STC Depth STC Range Step TRANSPONDER P/ Peak Transmit Po Receiver Bandwi Minimum Trigger Reply Pulse Widt Receiver Loss Receiver Noise F	wer 21 dth Loss Tigure ble Signal -6 ATCRBS_op ale e 1 e 1 on 3 ARAMETERS wer 21 dth 1 Level -6 h 0	00.0 (W) 9.0 (MHz) 9.5 (dB) 7.9 (dB) 30.0 (dBm) ben_array 0.0 (deg) 12.5 (rpm) 1.80 (usec) 2.0 16.0 (dB) 1.0 (nmi) 50.0 (W) 15.0 (MHz) 39.0 (dBm) 1.45 (usec) 4.0 (dB) 7.9 (dB)

RSS BSAT Analysis: 1.0 NM Range 50 to 500 FT MSL

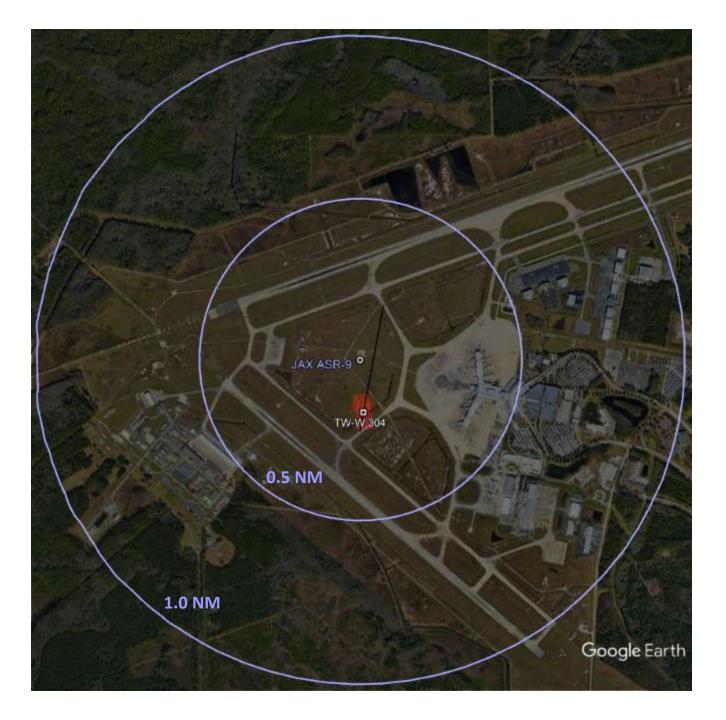
Boeing 767 400ER Tail Only TW-W_767_TO_305.rcs Bypass Taxiway "W" Station 305+00 (Point 11) N30° 29' 27.20", W81° 41' 32.73" Ground Elevation 24.42' MSL Centroid Elevation 66.66' MSL (+42.24' AGL)


Position Name: JAX ASR9/Mode S Latitude: 30:29:35.97 Longitude: -81:41:33.61 Beacon Height MSL: 92.3 FT Beacon Height AGL: 63.6 FT

	LEGEND	
	Multiple Mode Change Ret Mode Change Sou Inline Return Inline Source False Target Retur False Target Source	irce n
INTERROGATOR P Peak Transmit Po Receiver Bandwi Receiver System Receiver Noise F Minimum Detecta Elevation Tilt Ang Ant. Rotation Rate Pulse Length Vertical Polarizati STC Exponent STC Depth STC Range Step TRANSPONDER P/ Peak Transmit Po Receiver Bandwi Minimum Trigger Reply Pulse Widt Receiver Loss Receiver Noise F	ower 200.0 (idth 9.0 (N Loss 9.5 (c Figure 7.9 (c able Signal -80.0 (ATCRBS_open_a gle 0.0 (c e 12.5 (0.80 (c tion 2.0 36.0 (ARAMETERS ower 250.0 (idth 15.0 () Level -69.0 (th 0.45 () 4.0 (c	AHZ) IB) IB) IB) IB) IB) IB) IB) IB

RSS BSAT Analysis: 1.0 NM Range 500 to 4000 FT MSL

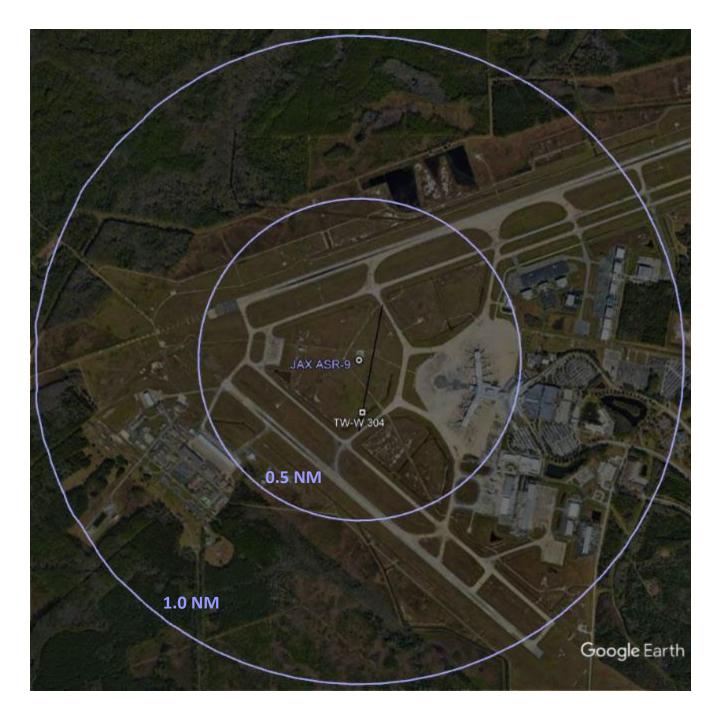
Boeing 767 400ER Tail Only TW-W_767_TO_305.rcs Bypass Taxiway "W" Station 305+00 (Point 11) N30° 29' 27.20", W81° 41' 32.73" Ground Elevation 24.42' MSL Centroid Elevation 66.66' MSL (+42.24' AGL)



	LEGEND
Mi Mi Ini Ini Fa	ultiple ode Change Return ode Change Source ine Return ine Source ilse Target Return ilse Target Source
INTERROGATOR PAR	AMETERS
Peak Transmit Powe	r 200.0 (W)
Receiver Bandwidth	9.0 (MHz)
Receiver System Lo:	
Receiver Noise Figu	
Minimum Detectable	Signal -80.0 (dBm)
Elevation Pattern A	
Elevation Tilt Angle	0.0 (deg)
Ant. Rotation Rate	12.5 (rpm)
Pulse Length Vertical Polarization	0.80 (usec)
STC Exponent	2.0
STC Depth	36.0 (dB)
STC Range Step	1.0 (nmi)
TRANSPONDER PARA	
Peak Transmit Powe	r 250.0 (W)
Receiver Bandwidth	15.0 (MHz)
Minimum Trigger Lev	/el -69.0 (dBm)
Reply Pulse Width	0.45 (usec)
Receiver Loss	4.0 (dB)
Receiver Noise Figu	re 7.9 (dB)

RSS BSAT Analysis: 1.0 NM Range 50 to 500 FT MSL

Boeing 767 400ER Tail Only TW-W_767_TO_304.rcs Bypass Taxiway "W" Station 304+00 (Point 10) N30° 29' 26.22", W81° 41' 32.93" Ground Elevation 24.09' MSL Centroid Elevation 66.33' MSL (+42.24' AGL)



Position Name: JAX ASR9/Mode S Latitude: 30:29:35.97 Longitude: -81:41:33.61 Beacon Height MSL: 92.3 FT Beacon Height AGL: 63.6 FT

RSS BSAT Analysis: 1.0 NM Range 500 to 4000 FT MSL

Boeing 767 400ER Tail Only TW-W_767_TO_304.rcs Bypass Taxiway "W" Station 304+00 (Point 10) N30° 29' 26.22", W81° 41' 32.93" Ground Elevation 24.09' MSL Centroid Elevation 66.33' MSL (+42.24' AGL)

	LEGEND
M M In In Fa	ultiple ode Change Return ode Change Source line Return line Source alse Target Return alse Target Source
INTERROGATOR PAR	
Peak Transmit Powe	er 200.0 (W)
Receiver Bandwidth	9.0 (MHz)
Receiver System Lo	
Receiver Noise Figu	
Minimum Detectable	
	ATCRBS_open_array
Elevation Tilt Angle	0.0 (deg)
Ant. Rotation Rate	12.5 (rpm)
Pulse Length	0.80 (usec)
Vertical Polarization	
STC Exponent	2.0
STC Depth	36.0 (dB)
STC Range Step	1.0 (nmi)
TRANSPONDER PAR	
Peak Transmit Powe	
Receiver Bandwidth	
Minimum Trigger Let	
Reply Pulse Width	0.45 (usec)
Receiver Loss Receiver Noise Figu	4.0 (dB) ure 7.9 (dB)
neceiver noise rigi	ale 7.5 (db)

RSS BSAT Analysis: 1.0 NM Range 50 to 4000 FT MSL

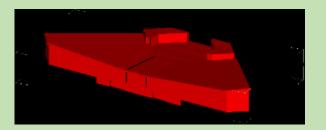
Boeing 767 400ER Tail Only TW-W_767_TO_313.rcs Bypass Taxiway "W" Station 313+00 (Point 19) N30° 29' 34.99", W81° 41' 31.10" Ground Elevation 27.10' MSL Centroid Elevation 69.34' MSL (+42.24' AGL)

> TOWER RAISE + 10 FEET

	LEGEND
	Multiple
	Mode Change Return
	Mode Change Source
	Inline Return
	Inline Source
	False Target Return
	False Target Source
_	Talse Talget obuice
INTERROGATOR P	PARAMETERS
Peak Transmit Po	ower 200.0 (W)
Receiver Bandwi	
Receiver System	
Receiver Noise F	
Minimum Detecta	
	n ATCRBS_open_array
Elevation Tilt An	
Ant. Rotation Rat	
Pulse Length	0.80 (usec)
Vertical Polarizat STC Exponent	aion 2.0
STC Depth	36.0 (dB)
STC Range Step	
TRANSPONDER P.	
Peak Transmit Po	
Receiver Bandwi	
Minimum Trigger	
Reply Pulse Widt	
Receiver Loss	4.0 (dB)
Receiver Noise F	Figure 7.9 (dB)

RSS BSAT Analysis: 1.0 NM Range 50 to 4000 FT MSL

Boeing 767 400ER Tail Only TW-W_767_TO_313.rcs Bypass Taxiway "W" Station 313+00 (Point 19) N30° 29' 34.99", W81° 41' 31.10" Ground Elevation 27.10' MSL Centroid Elevation 69.34' MSL (+42.24' AGL)


> **TOWER RAISE** + 20 FEET

Position Name: JAX ASR9/Mode S Latitude: 30:29:35.97 Longitude: -81:41:33.61 Beacon Height MSL: 112.3 FT Beacon Height AGL: 83.6 FT

	LEGEND
	Multiple Mode Change Return Mode Change Source nline Return nline Source False Target Return False Target Source
INTERROGATOR PA Peak Transmit Pow	
Receiver Bandwidt	
Receiver System L	oss 9.5 (dB) 🤇
Receiver Noise Fig	
Minimum Detectabl	
	ATCRBS_open_array
Elevation Tilt Angle Ant. Rotation Rate	e 0.0 (deg) 12.5 (rpm)
Pulse Length	0.80 (usec)
Vertical Polarizatio	
STC Exponent	2.0
STC Depth	36.0 (dB)
STC Range Step	1.0 (nmi)
TRANSPONDER PAR	
Peak Transmit Pow Receiver Bandwidt	
Minimum Trigger Le	
Reply Pulse Width	0.45 (usec)
Receiver Loss	4.0 (dB)
Receiver Noise Fig	jure 7.9 (dB)

RSS BSAT Analysis: 40 NM Range 50 to 4K FT MSL

JAX-CONC_sh_o.rcs Terminal B Expansion Building Only ORIGINAL – NO TILT

> TOWER RAISE + 20 FEET

Position Name: JAX ASR9/Mode S Latitude: 30:29:35.97 Longitude: -81:41:33.61 Beacon Height MSL: 112.3 FT Beacon Height AGL: 83.6 FT

		LEGEND
	Mode (Inline F Inline S False 1	Change Return Change Source Return
TERROGATOF Peak Transmit Receiver Band Receiver Syst Receiver Nois Minimum Dete Elevation Tit / Ant. Rotation F Pulse Length Vertical Polari STC Exponent STC Exponent STC Cepth STC Range St RANSPONDER Peak Transmit Receiver Band Minimum Trigg Reply Pulse W Receiver Loss Receiver Nois	Power dwidth em Loss e Figure ctable Sigr em ATCR Angle zation zation : PARAME Power dwidth ier Level idth	200.0 (W) 9.0 (MHz) 9.5 (dB) 7.9 (dB) 1al -80.0 (dBm) BS_open_array 0.0 (deg) 12.5 (rpm) 0.80 (usec) 2.0 36.0 (dB) 1.0 (nmi)

FIGURE 114

Federal Aviation Administration

RTR SITING STUDY

١

PROJECT:	Siting Study to Relocate RTRs Jacksonville International Airport (JAX) Jacksonville, FL
VERSION:	DRAFT
То:	Timothy Arch ESA Lead Planner, Planning and Requirements Group
FROM:	Marcos A Osorio Rodriguez, AJW2E13C Electronics Engineer (for AJWE13C Comm. Engineering – Atlanta)
DATE:	November 14, 2023

This record contains Sensitive Security Information that is controlled under 49 CFR parts 15 and 1520. No part of this record may be disclosed to persons without a "need to know", as defined in 49 CFR parts 15 and 1520, except with the written permission of the Administrator of the Transportation Security Administration or the Secretary of Transportation. Unauthorized release may result in civil penalty or other action. For U.S. government agencies, public disclosure is governed by 5 U.S.C. 552 and 49 CFR parts 15 and 1520.

Federal Aviation Administration

1	EXEC	CUTIVE SUMMARY	5
2	BAC	KGROUND	7
	2.1	AIRPORT AERONAUTICAL INFORMATION	7
	2.2	AIRPORT OPERATIONAL STATISTICS	8
	2.3	AIRPORT SECTIONAL CHART	9
	2.4	AIRPORT DIAGRAM	10
	2.5	Future Airport Construction	11
	2.6	FUTURE FAA CONSTRUCTION	12
3	CON	IMUNICATIONS COVERAGE REQUIREMENTS	13
	3.1	EXISTING FREQUENCY TRANSMITTING AUTHORIZATIONS AND TERMINAL SERVICE VOLUMES	
	3.2	GROUND BASED CRITICAL COMMUNICATIONS LOCATIONS.	
	3.3	EXISTING COMMUNICATIONS ISSUES	17
4	INFF	ASTRUCTURE ASSESSMENTS AND CONSIDERATIONS	
	4.1	COMMUNICATIONS COVERAGE	
	4.2	Power	
	4.3	COMMUNICATIONS DIVERSITY	
	4.4	AIRFIELD SAFETY	
	4.5	Physical Security	19
	4.6	Environmental/Legal Considerations	19
	4.7	REAL ESTATE ACQUISITION	19
	4.8	FAA MAINTAINABILITY	-
	4.9	Airport Layout Plans	
5	PRE	LIMINARY COMMUNICATIONS SITES	20
	5.1	EXISTING FAA FACILITIES	20
	5.2	Other Facilities	20
6	ANA	LYSIS	22
	6.1	CANDIDATE SITE A	22
	6.2	CANDIDATE SITE B	23
	6.3	CANDIDATE SITE C	24
7	RECO	OMMENDATIONS	25
8	ATT	ACHMENTS	26
	8.1	CANDIDATE SITE A	26
	8.2	CANDIDATE SITE B	36
	8.3	CANDIDATE SITE C	
	8.4	ANTENNA TOWER CONFIGURATION	57

JAX RTR Siting Study 11/14/2023

1 EXECUTIVE SUMMARY

This Remote Transmitter Receiver (RTR) Siting Study was conducted to support the future development of Jacksonville International Airport. This study examines the viability of relocating the legacy Remote Transmitter Receiver (RTR) site (JAX RTR-F) and the communications services it provides to the FAA's Air Traffic Control System. The scope of the airfield communications coverage study involves relocating the legacy RTR to a new location.

It is the recommendation of FAA Engineering Services and Spectrum Engineering Group to relocate the legacy JAX RTR services to Candidate Site 1 close to the windsock as shown in Figure 1-1. The Candidate Site 1 location provides a clear line of sight to both ends of the runways and all the way to the hold short point/area. This site offers easy access for local SSC technicians for maintenance. Additionally, lowering the antenna heights to 32 feet from 45 feet would increase the ground coverage and improve the overall communication coverage for Air Traffic.

The approximate coordinates of the facility would be 30°29'36.90"N, 81°41'46.47"W. The required leased space will be approximately (220 ft x 220 ft) one acre of land. There will be minimum of (one) 32 ft consolidated platform or (three) 32 ft towers and a 12'x36' precast shelter constructed at this location.

Figure 1-1: Existing RTR-F & Recommended RTR Sites (Candidate Sites 1 and 2)

2 BACKGROUND

2.1 Airport Aeronautical Information

Airport Identifier:	JAX
Airport Status:	Operational
Elevation:	29.6 FT
Location:	9 miles N of JACKSONVILLE, FL
Ownership:	Publicly owned
Owner:	Jacksonville Aviation Authority
Chief Executive Officer:	Mark D. VanLoh, CEO
Airport Physical Address:	14201 Pecan Park Road
	Jacksonville, FL 32218
Control Tower:	Yes
Sectional chart:	Jacksonville
Boundary ARTCC:	ZJX – Jacksonville ARTCC
NOTAMs Facility:	JAX (Jacksonville Int'l)

Source: <u>https://nfdc.faa.gov/nfdcApps/services/ajv5/airportDisplay.jsp?airportId=JAX</u> Effective: 11/02/2023 - 11/30/2023

2.2 Airport Operational Statistics

Aircraft operations: avg. 273/day *			
Commercial:	63%		
Transient General Aviation:	15%		
Air Taxi:	14%		
Military:	4%		
Local General Aviation:	4%		

* for 12-month period ending 28 February 2023, Source: <u>http://www.airnav.com/</u>

2.3 Airport Sectional Chart

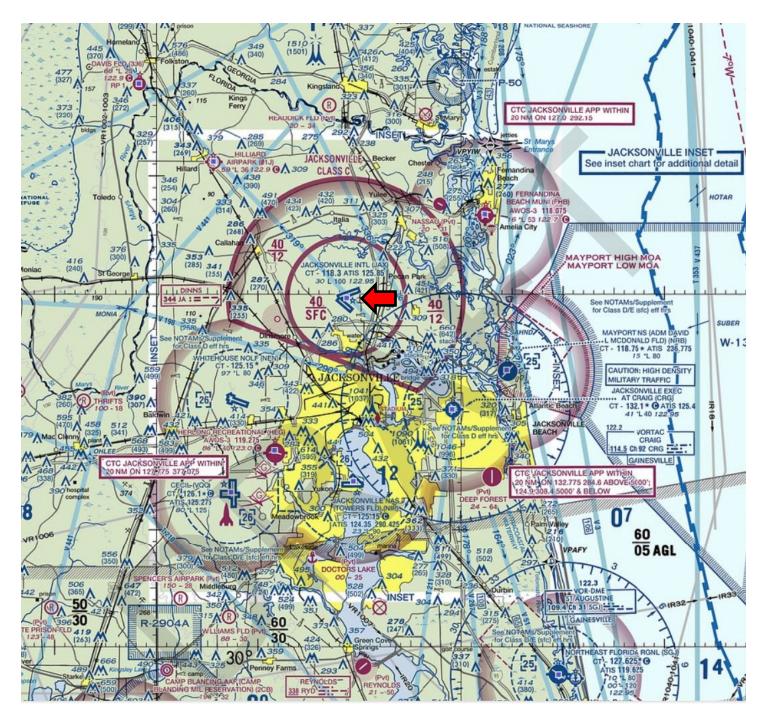


Figure 2-1: VFR Terminal Chart Source: <u>https://aeronav.faa.gov</u> (Jacksonville – Effective 30 Nov 2023)

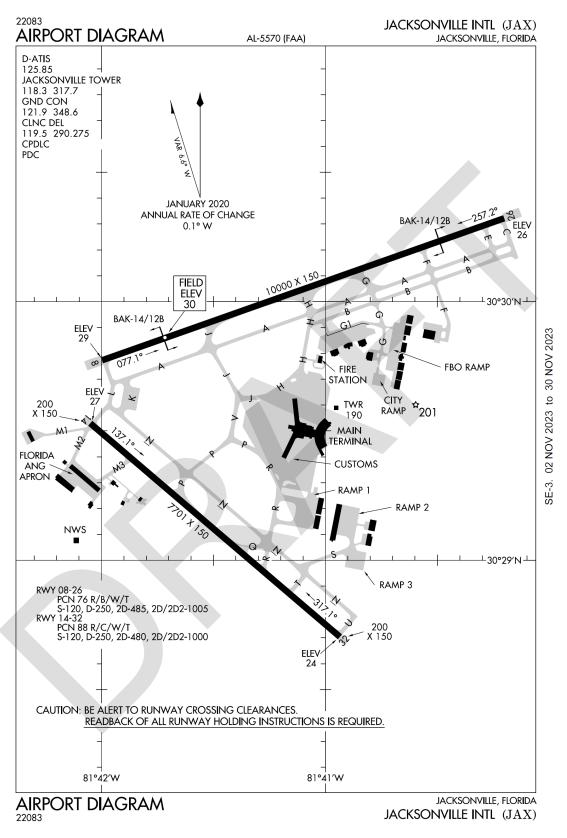


Figure 2-2: Airport Diagram – Jacksonville Int'l Airport Source: <u>https://nfdc.faa.gov/</u> Effective Nov 02, 2023

JAX RTR Siting Study 11/14/2023

Page 10 of 24

Federal Aviation Administration

3 COMMUNICATIONS COVERAGE REQUIREMENTS

3.1 Existing Frequency Transmitting Authorizations

The existing licensed Frequency Transmitting Authorizations (FTA) and Terminal Service Volume data for the Jacksonville International Airport have been provided by ESA Spectrum Engineering. The requirement for each frequency is shown below in Table 3-1.

		1		<u> </u>	-	
Line	FREQUENCY	FAC. TYPE	MAX. POWER	CLASS	TYPE OF SERVICE	IDENT
1	118.3000 MHz	RTR	10.00W	FAC	LOCAL CTRL	JAXG - JAXH
2	119.0000 MHz	RTR	10.00W	FAC	APCH CTRL	JAXG - JAXH
3	119.5000 MHz	RTR	2.50W	FLU	CLNC DLVY	JAXG - JAXH
4	119.8500 MHz	RTR	10.00W	FAC	APCH CTRL	JAXG - JAXH
5	120.7500 MHz	RTR	10.00W	FAC	APCH CTRL	JAXG - JAXH
6	121.5000 MHz	RTR	10.00W	FA	EMERG COM	JAXG - JAXH
7	121.9000 MHz	RTR	2.50W	FLU	GRND CTRL	JAXG - JAXH
8	124.4000 MHz	RTR	10.00W	FAC	APCH CTRL	JAXG - JAXH
9	124.9000 MHz	RTR	10.00W	FAC	APCH CTRL	JAXG - JAXH
10	125.8500 MHz	RTR	10.00W	FAB	ATIS	JAXH
11	127.0000 MHz	RTR	10.00W	FAC	APCH CTRL	JAXG - JAXH
12	127.7750 MHz	RTR	10.00W	FAC	DEP CTRL	JAXG - JAXH
13	132.7750 MHz	RTR	10.00W	FAC	APCH CTRL	JAXG - JAXH
14	243.0000 MHz	RTR	10.00W	FA	EMERG COM	JAXG
15	269.9000 MHz	RTR	10.00W	FAC	APCH CTRL	JAXG - JAXH
16	284.6000 MHz	RTR	10.00W	FAC	APCH CTRL	JAXG - JAXH
17	288.3500 MHz	RTR	10.00W	FAC	APCH CTRL	JAXG - JAXH
18	290.2750 MHz	RTR	2.50W	FLU	CLNC DLVY	JAXG - JAXH
19	292.1500 MHz	RTR	10.00W	FAC	DEP CTRL	JAXG - JAXH
20	308.4000 MHz	RTR	10.00W	FAC	DEP CTRL	JAXG - JAXH
21	316.0750 MHz	RTR	10.00W	FAC	APCH CTRL	JAXG - JAXH
22	317.7000 MHz	RTR	10.00W	FAC	LOCAL CTRL	JAXG - JAXH
23	348.6000 MHz	RTR	2.50W	FLU	GRND CTRL	JAXG - JAXH
24	377.0750 MHz	RTR	10.00W	FAC	APCH CTRL	JAXG - JAXH

Frequency	Transmitting	Authority
-----------	--------------	-----------

Table 3-1: WebFTA

3.2 Ground Based Critical Communications Locations

Stakeholder input from the Communications Engineering Services, Spectrum Engineering, Jacksonville System Service Center (SSC), Jacksonville Air Traffic (AT), the airport authority and the FAA Office of Runway Safety identified **seventeen (17) locations** where ground communications are critical on the airport. Map 3-1 below reflects the general location of these data points on the airport.

Data Point #1: (30° 30' 16.65" N, 81° 40' 11.46" W) Location: Taxiway C @ Runway 8/26 This location was identified critical because ... Taxiway that transitions to active runaway with hold short markings.

Data Point #2: 30° 30' 10.04" N, 81° 40' 33.11" W Location: Taxiway F @ Runway 8/26 This location was identified critical because ... Taxiway that transitions to active runaway with hold short markings.

Data Point #3: 30° 30' 04.78" N, 81° 40' 49.07" W Location: Taxiway G @ Runway 8/26 This location was identified critical because ... Taxiway that transitions to active runaway with hold short markings.

Data Point #4: 30° 29' 59.64" N, 81° 41' 04.66" W Location: Taxiway H @ Runway 8/26 This location was identified critical because ... Taxiway that transitions to active runaway with hold short markings.

Data Point #5: 30° 29' 52.60" N, 81° 40' 59.04" W Location: Taxiway G1 @ Runway General Aviation Ramp This location was identified critical because ... Taxiway that transitions from non-movement area to movement area.

Data Point #6: 30° 29' 46.45" N, 81° 41' 03.87" W Location: Taxiway H @ Terminal Ramp This location was identified critical because ... Taxiway that transitions from non-movement area to movement area.

Data Point #7: 30° 29' 37.61" N, 81° 41' 23.12" W Location: Taxiway J @ Terminal Ramp This location was identified critical because ... Taxiway that transitions from non-movement area to movement area.

Data Point #8: 30° 29' 28.16" N, 81° 41' 25.27" W Location: Taxiway P @ Terminal Ramp This location was identified critical because ... Taxiway that transitions from non-movement area to movement area.

Data Point #9: 30° 29' 51.77" N, 81° 41' 31.17" W Location: Taxiway J @ Runway 8/26 This location was identified critical because ... Taxiway that transitions to active runaway with hold short markings.

Data Point #10: 30° 29' 43.98" N, 81° 41' 58.24" W Location: Taxiway L @ Runway 8/26 This location was identified critical because ... Taxiway that transitions to active runaway with hold short markings.

Data Point #11: 30° 29 '33.67" N, 81° 42' 00.53" W Location: Taxiway L @ Runway 14/32 This location was identified critical because ... Taxiway that transitions to active runaway with hold short markings.

Data Point #12: 30° 29' 29.31" N, 81° 42' 04.32" W Location: Taxiway M2 @ Runway 14/32 This location was identified critical because ... Taxiway that transitions to active runaway with hold short markings.

Data Point #13: 30° 29' 21.63" N, 81° 41' 55.31" W Location: Taxiway M3 @ Runway 14/32 This location was identified critical because ... Taxiway that transitions to active runaway with hold short markings.

Data Point #14: 30° 29' 17.44" N, 81° 41' 38.67" W Location: Taxiway P @ Runway 14/26 This location was identified critical because ... Taxiway that transitions to active runaway with hold short markings.

Data Point #15: 30° 29' 03.77" N, 81° 41' 15.15" W Location: Taxiway Q/R @ Runway 14/26 This location was identified critical because ... Taxiway that transitions to active runaway with hold short markings.

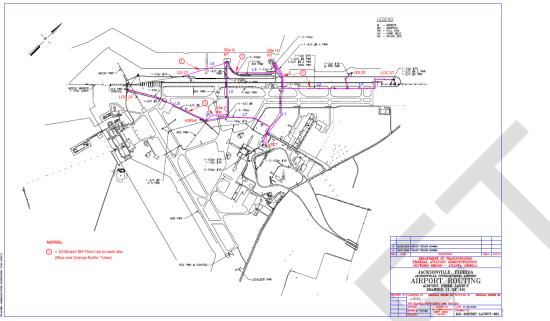
Data Point #16: 30° 28' 54.37" N, 81° 41' 07.51" W Location: Taxiway T @ Runway 14/32 This location was identified critical because ... Taxiway that transitions to active runaway with hold short markings.

Data Point #17: 30° 28' 44.69" N, 81° 40' 54.39" W Location: Taxiway U @ Runway 14/32 This location was identified critical because ... Taxiway that transitions to active runaway with hold short markings.

Map 3-1: ALP Ground Based Critical Communications Data Points

3.3 Existing Communications Issues

si sevi in tranie reports they have problems that the rono thing in equencies						
Line	FREQUENCY	FAC. TYPE	MAX. POWER	CLASS	TYPE OF SERVICE	IDENT
1	118.3000 MHz	RTR	10.00W	FAC	LOCAL CTRL	JAXG - JAXH
3	119.5000 MHz	RTR	2.50W	FLU	CLNC DLVY	JAXG - JAXH
7	121.9000 MHz	RTR	2.50W	FLU	GRND CTRL	JAXG - JAXH
18	290.2750 MHz	RTR	2.50W	FLU	CLNC DLVY	JAXG - JAXH
22	317.7000 MHz	RTR	10.00W	FAC	LOCAL CTRL	JAXG - JAXH
23	348.6000 MHz	RTR	2.50W	FLU	GRND CTRL	JAXG - JAXH


JAX Air Traffic reports they have problems with the following frequencies:

4 FOTS

4.1 Map

4.2 Needed Fiber DUCTs

- The FAA will need a new fiber duct section installed from the 25 LOC to the 07 GS shelter. A new 24-strand single mode fiber cable will need to be pulled in to the new ductbank section and terminated in new patch panels on each end.
- Two new ductbank sections will need to be installed from the new receiver site location to intersect and splice on to the existing fiber cable that goes from the ASR-9 to the 25 LOC.

5 INFRASTRUCTURE ASSESSMENTS AND CONSIDERATIONS

The siting process for potential communications sites evaluates many infrastructure factors in determining a viable communications facility. Listed below are the most common factors used to ascertain each communications site's favorable and unfavorable characteristics. The locations considered are generally located close to the center of the service volume. The locations considered have good Line of Sight (LOS) for the boundaries of the service volume boundaries. Candidate Sites will be ranked based upon the general criteria in Section 4 below that are taken from FAA Order 6580.6. Weighting factors will be assigned to the criteria to create a numerical ranking system (0-100 with 100 being highest) to determine the best, acceptable, and unacceptable candidate sites. Table 1-1 reflects the weighted matrix for Candidate Sites.

5.1 Communications Coverage

Communications coverage is the dominate parameter effecting the siting criteria score since it is the overriding Air Traffic requirement to establish an effective communications site. Different FAA communications facilities have different constraints for communications on the ground, lower altitude, and upper altitude communications coverage so the communications score will consider these variables when

JAX RTR Siting Study 11/14/2023

assigning this parameter's score. Elements to consider in the communications cover score are ground coverage on the AOA, terminal procedures such as Instrument Approach Procedures (IAPs) and Standard Terminal Arrival Procedures (STARs). Spectrum considerations such as pre-existing Radio Frequency Interference (RFI) sources nearby or whether the frequencies cause predicted RFI that cannot be mitigated by external filters or antenna separation. Terrain profiles and obstruction analysis will be performed by using FAA's iRCAS software. Undesirable Fresnel Zone influences to vertical antenna lobing will effect this parameter's score. Acceptable signal coverage within the required coverage area is a minimum signal level of -87 dBm. Strong signal coverage within the required coverage area is a minimum signal level of

5.2 Power

The power requirements for a FAA communications facility are defined in FAA Order 6950.2. A RTR facility has a Power Source "Code D". A Power Source "Code D" facility provides standby power immediately (without interruption) upon failure of the primary power source with a minimum sustained operation of four hours.

Power Source "Code D" denotes a commercial power source with D.C. Battery. An UPS is not included in this category. An engine generator can be considered in special circumstances as the standby power source such as coastal areas that may be impacted by hurricanes but must be approved through the FAA's National Change Proposal (NCP) process. Desired facilities would be locations that are located near existing utility services.

5.3 Communications Diversity

The communications diversity for a FAA communications facility is determined by FAA Order 6000.36. This requirement provides guidance for routing field cable and fiber optics from the RTR to the control facility. Physical separation of outside dual communications routes or cable loop systems (leased and FAA) require a minimum of 25 ft separation. The routing of the path should be engineered such that a failure or cut at one geographical location will not cause the loss of both communications paths. Sites should be somewhat near existing roads, power, telco and other connectivity services. Sites that do not have nearby services will be vastly more expensive to establish.

5.4 Airfield Safety

The FAA strives to provide the safest, most efficient aerospace system in the world. One factor that can contribute to runway incursions is airport configuration. When undertaking capital development projects on airfields, the FAA emphasizes locating communications facilities in areas where FAA technicians are not required to cross active runways, taxiways or ramp areas. This effort includes mitigating issues identified by the Office of Runway Safety as "Hot Spots" where a history or potential risk of collision or runway incursions exists.

5.5 Physical Security

Physical Security for a FAA communications facility is dictated by FAA Order 1600.69. These requirements include security fences and setbacks.

5.6 Environmental/Legal Considerations

An Environmental Due Diligence Audit (EDDA) is required to ensure existing environmental cleanup issues and the presence of any hazardous waste or hazardous materials are defined. Any protections that may be impacted by the construction and maintenance of the new facility will be further reviewed prior to final selection of the new communications site. These protections include plants, animals, insects, migration routes and nesting or breeding grounds. Significant additional costs may be required to mitigate these potential environmental/legal considerations.

5.7 Real Estate Acquisition

The use of existing FAA facilities (collocation) is usually preferred over the establishment of non-FAA or new leased facilities. If no suitable existing FAA facilities can be determined, locations where no-cost lease agreements locations are considered. Sources for no-cost lease agreements are other government agencies and airports who receive Airport Improvement Program funding from the Airport Improvement Act under Assurance 28. Purchasing property would only be considered if a suitable number of candidate sites could not be found that met FAA communications requirements.

5.8 FAA Maintainability

The candidate FAA communications facilities are evaluated on how accessible they are for the technicians maintaining the facility. Considerations for maintainability include unique badging/security demands, crossing runways/taxiways, hazardous terrain and narrow/inaccessible routes for transporting/resupplying equipment and materials to the facility. Modifications required to conform to OSHA regulations are another important design issue to ensure FAA maintainability.

5.9 Airport Layout Plans

The ALP has been reviewed to understand the airport's framework for long range planning, preparation for future growth and to address airport design deficiencies. The FAA will make every effort to ensure prospective communications facilities minimize the impact to the airport's present and future airport planning initiatives.

6 PRELIMINARY COMMUNICATIONS SITES

Stakeholders aided in identifying existing FAA facilities (collocation) and new facilities as potential communications sites. No effort was taken to analyze these locations during the "brainstorming" session to identify parcels of land.

Note: The parcels of land were identified with a letter of the alphabet and this designation should not be confused the letter designation assigned to the actual candidate sites selected for testing.

6.1 Existing FAA Facilities

Other than the evaluation of raising the towers from 35 FT to 70 FT on the existing RTR-F Site, no existing FAA facilities exist at the airport were identified as preliminary sites large enough to support the space and power requirements for an RTR site.

6.2 Other Facilities

Preliminary locations were identified on the airport in FAA's stakeholder brainstorming session:

30°30'2.05"N 81°41'47.63"W JAX - RTR-F Option Outside North of GS07

Map 6-1: Potential RTR sites identified by Stakeholders

7 ANALYSIS

Using the FAA siting criteria listed in Section 3 of this study, two locations and the option of raising the existing site from 35 FT to 70 FT were brainstormed in Section 6 were identified as potential candidate RTR sites. The two selected preliminary locations as potential candidate sites were:

Candidate Site 1 Close to Winsock: 30°29'36.90"N, 81°41'46.47"W Candidate Site 2 Option Outside North of GS07: 30°30'2.05"N, 81°41'47.63"W

These two candidate sites were analyzed for their performance by the Spectrum department using signal modeling software IRCAS.

The FAA recommends one (1) 32 ft Platform or three (3) 32 ft antenna towers on one acre of land (220 ft x 220 ft) for the Candidate Site 1 option for maximum service volume coverage yet remains outside the FAR Part 77 runway surfaces.

8 **RECOMMENDATIONS**

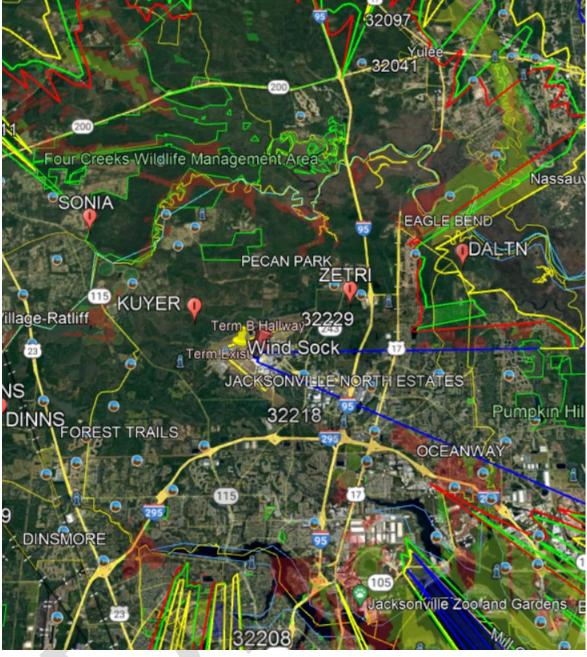
It is the recommendation of FAA Engineering Services to relocate the legacy JAX RTR services to Candidate Site 1 Close to the Windsock as shown in Figure 1-1. The Candidate Site 1 Close to the Windsock location provides the best ground-based communications coverage (as a receiver site relocated to JAX RTR) for the entire airfield covering 100% of the measured test points on the movement area.

The approximate coordinates of the facility would be $39^{\circ}02'30.0"N/84^{\circ}38'25.3"W$. The required leased space will be approximately (220 ft x 220 ft) one acre of land. There will be minimum one (1) 32 ft Platform or three (3) 32 ft antenna towers on one acre of land (220 ft x 220 ft) for the Candidate Site 1 (or similar consolidated platform design) and a 12'x36' precast shelter constructed at this location. New site will require DC BUS backup power.

9 ATTACHMENTS

FAA approved applications iRCAS and Frequency Management Tools were used in the analysis in Section 6 above:

9.1 Candidate Site 1


The iRCAS model theoretical coverage in the Spectrum Engineering's FTA defined coverage area of Candidate Site 1 is shown in Figure 8-1

Map 6-1: Coverage Analysis from the Wind Sock with 32 FT antennas.

Map 6-2: IAP Overlay.

9.2 Antenna Tower Configuration

Antenna Tower height affects the performance of a communications channel in the vertical lobing of the antenna pattern. The modeling was performed using the Frequency Management Tool and iRCAS for the service volumes defined in Table 3-1. The overall height will be important in determining whether a particular antenna tower will meet FAA Part 77 obstruction requirements. The results of these calculations reveal an aircraft's minimum altitude at the maximum range within a defined service volume to achieve satisfactory (-87 dBm) communication, the minimum RF level found within the first null of the first and second vertical lobes of an antenna pattern for each defined service volume and the calculated RF level at the maximum altitude/range for each defined service volume. The candidate sites antenna height recommendations are as follows:

Candidate Site 1: 32 ft antenna towers (<mark>49.5 ft receiver height</mark>) Candidate Site 2: 32 ft antenna towers (<mark>49.5 ft receiver height</mark>)

